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Preface

Particle physics is the study of the fundamental building blocks of nature, i.e. the
particles and their interactions. We have learned much about the four known forces
of nature—the strong, weak, electromagnetic and gravitational forces. This began
with the work of Coulomb, Ampére and Faraday on the phenomena of electricity
and magnetism, which led to the work of Maxwell in 1863 on the unified theory
of electromagnetism. The discovery of the radioactive decay of the elements in
1895 led along a jagged path to an understanding of the weak and strong forces,
culminating with Einstein’s general theory of relativity in 1915. Along the way
a quantum theory of nature was developed to understand the world of atoms
and molecules, while Einstein’s special theory of relativity was needed to unite
Newtonian mechanics with electrodynamics. Finally, these two paradigms were
combined in the very successful formalism of relativistic quantum field theory.

Beginning in 1905 with the discovery of the electron by J.J. Thomson, the particle
zoo has grown dramatically. It now includes three families of quarks and leptons.
The lightest up and down quarks are the constituents of protons and neutrons,
while the lightest leptons include the electron and three types of neutrinos. The
two additional families of quarks and charged leptons exist for no apparent reason.
These particles and their forces are the ingredients of the Standard Model of particle
physics which became complete with the discovery of the Higgs boson in 2012.
The Standard Model incorporates the great success of quantum electrodynamics,
using the paradigm of relativistic quantum field theory to describe all particles and
their interactions via the strong, weak and electromagnetic forces. The Standard
Model (plus Einstein’s gravity) describes, with amazing accuracy, phenomena on
the smallest distance scales measured in the laboratory and the largest distance
scales relevant for stars, planets and galaxies. It is used to understand the universe
from the time of the Big Bang until the present.

Whereas the Standard Model is now complete, it is far from a satisfactory theory
of everything. We don’t understand why the four forces have dramatically different
strengths. We don’t know why there are three families of quarks and leptons or why
they have their respective masses. There is apparently an unknown dark matter and
dark energy pervading the universe, and these don’t fit into the Standard Model.
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viii Preface

We don’t understand why the three types of neutrinos are massive, but all so
light. Finally, we don’t know if the four forces of nature are all that there is or
whether they are completely independent. For example, we learned in 1973 that
the electromagnetic and weak forces are not independent at all, but are unified
into the electroweak interactions. Perhaps all the fundamental building blocks of
nature, i.e. the particles and the four forces, are unified in some way. This idea
receives traction from the fact that quarks and leptons are all apparently point like
fundamental particles. J. Pati and A. Salam suggested in 1973 that perhaps quarks
and leptons can also be unified in some big picture.

It is this big picture which is the focus of this book. By 1976, when I received
my Ph.D., it seemed that all the necessary theoretical ingredients of the Standard
Model were present. It just took another 36 years of experiment to convincingly
demonstrate this point. Upon receiving my Ph.D., I began considering physics
beyond the Standard Model. Grand unification of the particles and forces had
already been discussed by Howard Georgi and Sheldon Glashow in 1974. From
their analysis and the work of H. Georgi, H. Quinn and S. Weinberg, it was clear
that grand unified theories can unify quarks and leptons and also the strong, weak
and electromagnetic forces. Proton decay was predicted to occur and experiments
looking for proton decay were constructed.

In 1980, while at Stanford, Leonard Susskind, Savas Dimopoulos, Hans Peter
Nilles and I began studying the remarkable new theoretical construct known as
“supersymmetry”. Savas and I constructed supersymmetric models of particle
physics which attempted to explain why the weak scale is so much smaller than
the Planck scale (where gravity becomes strong). Then in 1981, for a short period
of time, Frank Wilczek, Savas and I overlapped at U.C. Santa Barbara. In this brief
moment, we showed that supersymmetric grand unification was consistent with all
known data. We predicted that the early experiments searching for proton decay
might not see anything. Finally, just ten years later, in 1991 it was shown by the LEP
experiments at CERN that supersymmetric grand unification was consistent with
the measured strengths of the strong, weak and electromagnetic forces. However,
gravity was still an outlier. In subsequent years many attempts have been made to
combine all the known particles and forces into one unified theory. In my mind,
this requires embedding any theory of particle physics into string theory, which
successfully incorporates a quantum theory of gravity.

In these lectures, I will describe my own attempts in this direction. To be clear,
this work is not done. Moreover, at the time of this writing, it is still not known
experimentally whether supersymmetry is a property of nature. Nevertheless, the
theory of supersymmetric grand unification is so compelling that many physicists,
including me, feel that it will eventually be discovered. Let me now begin the
discussion of supersymmetric grand unified theories starting with the Standard
Model and ending with a string theory description of the fundamental building
blocks of nature.

Columbus, OH, USA Stuart Raby
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Chapter 1
Introduction

In this course we will discuss my personal view on Supersymmetric Grand Unified
Theories [SUSY GUTs]. It therefore behooves me to start the course by laying
out my perspective and thereby provide an understanding of how this course will
progress. The course will be divided into three sections. In the first section we will
discuss SUSY GUTs in four space-time dimensions. Complete four dimensional
theories exist in the literature and they make predictions for experiments. We will
discuss these predictions and/or constraints coming from present day experimental
results. We will then discuss some of the ugly features of these models. Of course,
beauty is subjective and in this case we will define beauty as the possibility of
embedding our four dimensional SUSY GUT in a theory including gravity. Since
the only known consistent quantum mechanical theory of gravity is String Theory
[ST], we will require that our SUSY GUT be embeddable into ST. This will provide
theoretical constraints on model building which can be satisfied by defining our
SUSY GUT in extra spatial dimensions. In section two of the course we will
therefore spend some time discussing so-called Orbifold GUTs and how they solve
some of the problems of 4D SUSY GUTs. Unfortunately, Orbifold GUTs introduce
new problems which are then resolved in the third section in which we show
how to embed Orbifold GUTs into the E8 ˝ E8 Heterotic String in ten space-time
dimensions.

Before beginning this review on SUSY GUTs, it is probably worthwhile
spending a very brief moment motivating the topic. What are the virtues of SUSY
GUTs? The following is a list of all the issues that SUSY GUTs either addresses
directly or provides a framework for addressing.

1. MZ << MGUT “Natural,” i.e. Why is the weak scale so much smaller than either
the GUT or the Planck scales.

2. Explains Charge Quantization and family structure.

© Springer International Publishing AG 2017
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2 1 Introduction

3. Predicts Gauge Coupling Unification�1

4. Predicts Yukawa Coupling Unification
5. and with the addition of Family Symmetries it can accommodate the Hierarchy

of Fermion Masses.
6. Neutrino Masses are obtained via a See-Saw scale � 10�3–10�2 MG.
7. The Lightest Supersymmetric Particle [LSP] is a natural Dark Matter Candi-

date.
8. Baryogenesis via Leptogenesis, i.e. the matter- anti-matter asymmetry of the

universe is produced by first creating a lepton asymmetry.
9. SUSY Desert (no new physics between the weak and GUT scales) means that

LHC experiments probe physics of order the GUT scale.
10. SUSY GUTs are natural extensions of the Standard Model.

In the following lectures we will discuss some of these issues in great detail. Let us
start by defining our notation for the Standard Model.

1The asterisk is there since this prediction is consistent with low energy data.



Chapter 2
Brief Review of the Standard Model

2.1 Notation

We use the following notation throughout the book. The 4D metric is given by

g�� D

0
BB@

C1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1
CCA (2.1)

where the indices �; � take on values .0; 1; 2; 3/. The Dirac gamma matrices in the
chiral basis are given by

�� D .�0; � i/ D
�
0 ��

N�� 0

�
; i D 1; 2; 3 ; �5 D

��I2�2 0

0 I2�2

�
(2.2)

in terms of the 2 � 2 blocks

�� D .I2�2; � i/; N�� D .I2�2;�� i/ (2.3)

where � i are the Pauli matrices with

�1 D
�
0 1

1 0

�
; �2 D

�
0 �i
i 0

�
�3 D

�
1 0

0 �1
�
:

Also

��� D 1

4
.�� N�� � �� N��/

© Springer International Publishing AG 2017
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4 2 Brief Review of the Standard Model

and

N��� D 1

4
. N�� �� � N�� ��/

�˛ ˇ D
�
0 �1
1 0

�
� �i�2

2.2 The Standard Model

Let us define the generators for the gauge group SU.3/˝SU.2/˝U.1/Y as TA; A D
1; : : : ; 8 for SU.3/ , Ta; a D 1; 2; 3 for SU.2/ and the hypercharge operator Y for
U.1/Y . TA, Ta and Y are operators which take values, defined below, on Standard
Model fields. We define the Standard Model in its simplest form in terms of left-
handed Weyl spinors.

The gauge interactions of the quarks and leptons of the Standard Model are then
completely defined in terms of their gauge quantum numbers. The quark and lepton
fields for one family are given in terms of the left-handed Weyl spinors:

q D
�
u
d

�
; Nu; Nd; l D

�
�

e

�
; Ne; N� (2.4)

with SM charges given by

TA q D 1

2
�A q; TA Nu D �1

2
�TA Nu; TA Nd D �1

2
�TA

Nd
TA l D TA Ne D TA N� D 0 (2.5)

(where �A; A D 1; � � � ; 8 are the 3 � 3 Gell-Mann matrices).

Ta q D 1

2
	a q; Ta l D 1

2
	a l

Ta Nu D Ta Nd D Ta Ne D Ta N� D 0 (2.6)

(where 	a; a D 1; 2; 3 are the 2 � 2 Pauli matrices). We use the convention
Tr.TA TB/ D 1

2
ıAB and Tr.Ta Tb/ D 1

2
ıab.

Y q D 1

3
q; Y Nu D �4

3
Nu; Y Nd D 2

3
Nd; Y l D �l; Y Ne D C2Ne; Y N� D 0: (2.7)
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With this notation, the gauge covariant derivative is given by

D� D .@� C igsTAG�A C igTaW�a C ig0 Y
2
B�/ (2.8)

and the electric charge operator is given by Q D T3 C Y
2

.
Let us define matrix valued gauge fields given by

QG� D TAG�A and QW� D TaW�a: (2.9)

Then the gauge field strengths are simply given by

QG�� D @� QG� � @� QG� C igsŒ QG�; QG�� (2.10)

and similarly for QW�� .
Then the gauge-fermion Lagrangian is given by

Lgauge�fermion D Œl� i N��D� l C Ne� i N��D� Ne C N�� i N��D� N� (2.11)

Cq� i N��D� q C Nu� i N��D� Nu C Nd�
i N��D� Nd�

�1
2
Tr. QG�� QG ��/� 1

2
Tr. QW��

QW��/� 1

4
B��B

��

where family indices are suppressed. Note, under the discrete symmetries fC; P; Tg
the Weyl spinors transform as follows (for example for electrons)

C e $ Ne (2.12)

P eL $ eR (2.13)

T e $ i �2 e�I Ne $ i �2 Ne�: (2.14)

In order to make contact with phenomenology it is often useful to use Dirac four
component notation. For example, the Dirac 4 component electron field, in terms of
the 2 component Weyl spinors, is given by


e �
�
eL
eR

�
D
�

e
i�2 .Ne/�

�
: (2.15)

The gauge-fermion Lagrangian for one family of leptons, using Dirac notation (and
ignoring the right-handed neutrinos N�), is then given by

Lgauge�fermion D N
�Li��@�
�L C N
ei��@
�
e (2.16)

� gp
2
ŒW�� N
e��PL
�e C W�

C N
�e��PL
e�C eA� N
e��
e
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� g

2 cos �W
Z�Œ N
�e��.g�eV � �5g�eA /
�e C N
e��.g

e
V � �5g

e
A/
e�

�1
4
W��aW

��
a � 1

4
B��B

��

where1

g�eV D g�eA D 1

2
I geV D �1

2
.1 � 4 sin2 �W/; geA D �1

2
: (2.17)

In addition we must add the Higgs bosons. We will introduce the minimal set of
Higgs doublets consistent with supersymmetry (see next lecture).

Hu D
�
hC
h0

�
; Hd D

� Nh0
Nh�
�

(2.18)

satisfying

TA Hu D TA Hd D 0

Ta Hu D 1

2
	a Hu; Ta Hd D 1

2
	a Hd

Y Hu D CHu; Y Hd D �Hd: (2.19)

� LYukawa D �˛ˇ Nei Yij
e l˛j Hˇ

d C �˛ˇ Ndi Yij
d q˛j Hˇ

d C �˛ˇ Nui Yij
u qˇj H˛

u (2.20)

C�˛ˇ N�i Yij
� lˇj H˛

u � 1

2
Mij N�i N�j C h:c:

where the implicit fermion spinor indices are anti-symmetrized, i.e. for example,
Ne l � NeT .�i�2/ l, i; j D 1; 2; 3 are family indices and ˛; ˇ D 1; 2 are SU.2/
doublet indices. The Yukawa matrices, Ye; Yd; Yu; and Y� are, in general, 3 � 3
complex matrices. They are assumed to be determined by some fundamental theory
at some scale between 1 TeV and the Planck scale. In this course we shall assume
that the fundamental scale is of order a GUT scale, � 1016 GeV. Note, the SM
kinetic terms (including the gauge interactions) are invariant under a large global
symmetry, U.3/q �U.3/Nu �U.3/ Nd �U.3/l �U.3/Ne. In the next section, we shall use
this global symmetry to diagonalize the fermion mass matrices.

Finally we add the Higgs Lagrangian given by

LHiggs D .D�Hu/
�.D�Hu/C .D�Hd/

�.D�Hd/ � V.Hu;Hd/ (2.21)

1See problem 1.
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where the Higgs potential is chosen such that the Higgs fields obtain vacuum
expectation values [VEVs] which spontaneously break SU.2/˝ U.1/Y to U.1/EM,
i.e.

hHui D
�
0

vu

�
; hHdi D

�
vd
0

�
(2.22)

with vu D vp
2

sinˇ; vd D vp
2

cosˇ and v � 246GeV.
Note, as in the SM with one Higgs doublet, we have the relations satisfied at tree

level

tan �W D g0=g; e D g sin �W ; MW D MZ cos �W ; MW D gv

2
and

GFp
2

D g2

8M2
W

:

(2.23)

In Eq. (2.20) we have also added a Majorana mass term for the right-handed
neutrinos, or left-handed anti-neutrinos, with mass matrix Mij D Mji. This is
possible since the right-handed neutrinos are “sterile” neutrinos, i.e. they do not
have any SM charges.

2.3 Fermion Masses and Mixing

When the Higgs bosons obtain their vacuum expectation values, quarks and leptons
get chiral symmetry breaking masses. Their mass matrices are given by

me D Ye vd; md D Yd vd; mu D Yu vu (2.24)

and the Dirac mass matrix for the neutrinos is given by

m� D Y� vu: (2.25)

The diagonal mass matrices are obtained via two unitary rotations given by

mD
e D U�

Ne me Ul �
0
@
me 0 0

0 m� 0

0 0 m	

1
A (2.26)

mD
u D U�

Nu mu Uq �
0
@
mu 0 0

0 mc 0

0 0 mt

1
A

mD
d D U�

Nd md Ud �
0
@
md 0 0

0 ms 0

0 0 mb

1
A :
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For neutrinos, we choose to work in a lepton flavor basis with U� � Ul.
Upon diagonalizing the fermion mass matrices, we find that there appears a CKM

mixing matrix in the coupling to charged W bosons, with

L � � gp
2
W�

C .u� N�� VCKM d C �� N�� e/ (2.27)

where VCKM � U�
q Ud, i.e. the consequence of up-down symmetry breaking in the

Yukawa matrices is the fundamental reason VCKM ¤ I. The nine quark and lepton
masses are very much hierarchical with u; d; e lighter than c; s; �which are lighter
than t; b; 	 . The lightest charged fermion is the electron with mass, me � 0:5MeV,
and the heaviest is the top quark with mass, mt � 173GeV. In addition, the CKM
matrix is also hierarchical which is most apparent in the Wolfenstein form

VCKM �

0
B@

1 � �2

2
� A �3 . � i�/

�� 1 � �2

2
A �2

A �3 .1 �  � i�/ �A �2 1

1
CA (2.28)

with � � 0:22; A � 0:8;
p
2 C �2 � 0:4 and � is the CP violating parameter. The

CKM matrix parametrizes flavor violation in the quark sector with generally small
mixing angles, i.e. sin.�C/ � �.

For neutrinos, on the other hand, we assume that the Majorana mass matrix
has three large eigenvalues, much larger than the electroweak VEV, v. In this case
we obtain three heavy Majorana neutrinos (mostly N�s) and three light Majorana
neutrinos (mostly �s) with mass matrix given by

Qm� D UT
l mT

� M
�1 m� Ul: (2.29)

Note the neutrino mass matrix, Qm� , is not necessarily diagonal in the flavor basis. It
can however be diagonalized via a unitary transformation, U, such that

QmD
� D UT Qm� U �

0
@
m1 0 0

0 m2 0

0 0 m3

1
A : (2.30)

The unitary matrix,U � UPMNS is measured in neutrino oscillation experiments. We
have flavor eigenstates given by j�˛ > with ˛ D fe; �; 	g which are transformed
into mass eigenstates, j�i > with i D 1; 2; 3 via

j�˛ >D U�̨
i j�i > : (2.31)

In the neutrino sector three mixing angles and two mass differences have been
measured. The upper bound on the sum of neutrino masses is given by cosmology
to be of order 0:12 eV. Defining �m2ij D m2i � m2j we have �m221 � 7 � 10�5 eV2,
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�m232 � ˙2 � 10�3 eV2 (with the plus sign corresponding to the normal mass
hierarchy and the minus sign the inverted mass hierarchy). In addition, the PMNS
matrix written in the form

UPMNS D
0
@

c12 c13 s12 c13 s13 e�iı

�s12 c23 � c12 s13 s23 eiı c12 c23 � s12 s13 s23 eiı c13 s23
s12 s23 � c12 s13 c23 eiı �c12 s23 � s12 s13 c23 eiı c13 c23

1
A (2.32)

has sin2.�12/ � 0:3; sin2.�23/ � 0:45; sin2.�13/ � 0:024 and the CP violating
angle (which hasn’t been directly measured) satisfying sin ı � �1 by consistency
with several experiments.

The three gauge coupling constants have been measured quite accurately and at
the Z mass we have ˛s.MZ/ � 0:11; ˛�1

EM.MZ/ � 128; sin2.�W/.MZ/ � 0:23.
The Standard Model is thus defined in terms of three experimentally measured

gauge couplings; 13 charged fermion masses and mixing angles; 3 neutrino masses,
3 real mixing angles and 1 CP violating phase in the leptonic sector (2 additional CP
violating phases in the neutrino sector are probably unobservable); the Higgs and Z
masses and a QCD � angle which satisfies � < 10�10 or a total of 28 parameters
(29 including gravity, with GN � M�2

Planck and MPlanck � 1:2 � 1019 GeV).



Chapter 3
Minimal Supersymmetric Standard Model

3.1 Notation

In this section we refine our spinor notation and introduce the dotted and un-dotted
notation for Weyl spinors. The Lorentz group SO.1; 3/ is homomorphic to the group
SL.2;C/ where the latter is defined by the set of complex 2 � 2 matrices, M with
detM D 1 and group product, matrix multiplication. If we take the four vector
momentum, P� D .E; �p/ and define the matrix

P� �
� D

�
E � p3 �. p1 � ip2/

�. p1 C ip2/ E C p3

�
; (3.1)

then it is easy to see that det.P� ��/ D E2 � p2 � P� P� is a Lorentz scalar. The

general element M 	 SL.2;C/ has the form M D
�
˛ ˇ

� ı

�
where ˛; ˇ; �; ı are

complex numbers with ˛ ı � ˇ � D 1. Thus SL.2;C/ is defined by a 6 dimensional
group manifold, just like the Lorentz group. Moreover, it is easy to see that the
SL.2;C/ transformation

P0
� �

� D M P� �
� M� (3.2)

satisfies .P0/2 D P2. Thus it generates a Lorentz transformation on two component
spinors,  ˛ , such that

 0̨ D M˛
ˇ  ˇ: (3.3)

We can also define spinors with upper indices,  ˛ which transform by  0˛ D
 ˇ M�1

ˇ
˛
. We note that the bilinear .� �/ D �˛ �˛ is a Lorentz scalar.

© Springer International Publishing AG 2017
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12 3 Minimal Supersymmetric Standard Model

The group SL.2;C/ has a 2 � 2 invariant tensor given by �˛ ˇ D
�
0 �1
1 0

�
�

�i�2. Then � can be used to raise and lower spinor indices. Define �˛ D �˛ ˇ �
ˇ and

�˛ D �˛ ˇ �ˇ where �˛ ˇ � ��˛ ˇ and �ˇ ˛ �˛ � D ıˇ
� . Then

.� �/ D �˛ �˛ D �˛ �˛ ˇ �
ˇ: (3.4)

There is also a conjugate spinor representation, N P̨ �  �̨ transforming as N 0
P̨ D

M� P̨
P̌ N P̨ and N P̨ transforming as N 0 P̨ D M��1 P̨

P̌ N P̨ . The invariant tensor for the

conjugate representation is � P̨ P̌ � �˛ ˇ and � P̨ P̌ D �� P̨ P̌ . Then N P̨ D � P̨ P̌ N P̌ ,
N P̌ D � P̌ P̨ N P̨ and the Lorentz scalar is given by

. N� N�/ D N� P̨ N� P̨ : (3.5)

Note the difference between the definitions, Eqs. (3.4) and (3.5).
With this refined notation, we have

�� D ��˛ P̌; N�� D N� P̨ ˇ
� (3.6)

and

.���/˛
ˇ D 1

4
.�� N�� � �� N��/˛ˇ (3.7)

. N���/ P̨ P̌ D 1
4
. N�� �� � N�� ��/ P̨ P̌:

Finally, a Dirac electron field, 
e, is given in terms of two left-handed Weyl
fermion fields, e; Ne via


e D
�

e˛
i�2 .Neˇ/�

�
D
�

e˛
.�˛ˇ Neˇ/�

�
: (3.8)

There are by now many references on supersymmetry, for an incomplete list see
[1–5].

3.2 The MSSM

The generalization of the SM to the Minimal Supersymmetric Standard Model
[MSSM] is now quite simple. One defines the left-handed chiral superfields. For
example, the electron left-handed Weyl field, e, along with its scalar partner, Qe, is
contained in the left-handed chiral superfield, E, with

E. y; �/ D Qe. y/C p
2.� e. y//C .� �/Fe. y/ (3.9)
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where y� D x� � i� ���� and Fe. y/ is an auxiliary field. We shall also use the
notation �2 � .� �/. Note, �˛ is a Grassmann coordinate, transforming as a left-
handed Weyl spinor.

In addition, the gauge bosons are contained in a real superfield, V.x; �; ��/,
which, in the so-called Wess-Zumino gauge, has the form,VWZ D �� �� �� V�.x/C
i�2 .�� �.x/�/ � i��2 .� �.x//C 1

2
�2 ��2 D.x/ where V� is the gauge field, �˛ is

the gaugino and D is the auxiliary field. The superfield containing the gauge boson
field strength is given by W ˛

WZ D gŒ�˛. y/C �˛ .�D. y//C i���˛ˇ �ˇ F��. y/C
�2 .�� @� �. y/�/˛�. From now on all gauge superfields will be given in the Wess-
Zumino gauge.

Then the supersymmetric Lagrangian includes the gauge-kinetic term

Lgauge�kinetic D Œ
1

8g2s

Z
d2�Tr.Wg

˛ Wg˛/C h:c:� (3.10)

CŒ 1
8g2

Z
d2�Tr.WW

˛ WW˛/C h:c:�

CŒ 1

16g02

Z
d2�.Wb

˛ Wb˛/C h:c:�

and the gauge-matter interaction term

Lgauge�matter D Œ

Z
d4�K � (3.11)

where the Kähler potential, K , is given by

K D L�i exp.�2 ŒgsVg C gVW C g0Y
2
VB�/ Li C � � � �: (3.12)

Note, Vg D VA TA; VW D Va Ta and the flavor index i D 1; 2; 3.
The Yukawa interactions are then given by LYukawa D R

d2�W C h:c: with the
superpotential given by

W D �˛ˇ NEi Y
ij
e L˛j Hˇ

d C �˛ˇ NDi Y
ij
d Q˛j Hˇ

d C �˛ˇ NUi Y
ij
u Qˇj H˛

u (3.13)

C�˛ˇ NNi Y
ij
� Lˇj H˛

u � 1

2
Mij NNi NNj � � �˛ˇ H˛

u Hˇ
d :

1. Note, in a supersymmetric generalization of the SM there are necessarily two
Higgs doublets, Hu; Hd. This is because the superpotential is given in terms of
the analytic holomorphic product of superfields only and Hu and Hd are both
SU.2/ doublets, but with opposite hypercharge.
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2. In addition, in order for the theory to be anomaly free, we need higgsinos with
equal and opposite hypercharge to cancel the Y3 and Y SU.2/2 anomalies.

3. The theory has a discrete symmetry known as R-parity [6, 7] D .�1/3.B�L/C2S
defined by the transformation

H. y; �/ ! H. y;��/; F. y; �/ ! �F. y;��/ (3.14)

where H is either Higgs doublet and F represents any quark or lepton superfield.
All ordinary SM particles have even charge under R-parity, while all superpart-
ners have odd charge. As a consequence, superpartners must be produced in pairs
in any accelerator experiment and the lightest supersymmetric particle [LSP] is
absolutely stable. Thus the LSP is a good candidate for dark matter.

4. The MSSM is the most general Lagrangian extension of the SM consistent with
SU.3/� SU.2/� U.1/Y , supersymmetry and R-parity.

5. The component fields for sterile neutrinos are given by NN � fQN�; N�; FN�g.
6. The theory has a � problem. The � term is a supersymmetric contribution to the

MSSM Lagrangian. The Higgs mass (and thus the Z mass) depends on the value
of �. But in the MSSM, there is no reason for � to be of order the weak scale
and not much, much larger.

3.3 MSSM in Terms of Component Fields

The Lagrangian for the MSSM written in terms of superfields is quite com-
pact. However once the integrals over the Grassmann coordinates are done, the
Lagrangian has many terms. In order to display them, let’s discuss the form of the
most general supersymmetric Lagrangian. Consider chiral superfields,

˚i. y; �/ D �i. y/C p
2.�  i. y//C �2 Fi. y/ (3.15)

and gauge superfield

Vs.x; �; ��/ � Vs.x; �; ��/a Ts
a (3.16)

D �� �� �� Vs
�.x/C i�2 .�� �s.x/�/

�i��2 .� �s.x//C 1

2
�2 ��2 Ds.x/

where Ts
a; a D 1; � � � ; dsadj are the generators of the group G s in the fundamental

representation (or in the representation relevant for the chiral matter fields) and
dsadj is the dimension of the adjoint representation. The supersymmetric gauge field
strength is

W s˛ D gsŒ�s. y/˛ C �˛ .�Ds. y//C i.���/˛ˇ �ˇ F
s. y/�� C �2 .�� @� �

s. y/�/˛�:
(3.17)
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The Lagrangian has three terms

1.

Lgauge�kinetic D
X
s

Œ
1

16 k gs2

Z
d2�Tr.f .˚i/ W

s˛ W s
˛/C h:c:� (3.18)

2.

Lgauge�matter D Œ

Z
d4�K � (3.19)

where the renormalizable Kähler potential is given by

K D
X
i

.˚
�
i expŒ

X
s

.�2 gs Vs/� ˚i/: (3.20)

In general, the Kähler potential is a hermitian, gauge invariant function of the
fields, ˚i; ˚

�
i and Vs. In addition, the chiral matter interactions are determined

by the Yukawa Lagrangian,
3.

LYukawa D
Z

d2�W .˚i/C h:c (3.21)

where the gauge kinetic function, f .˚/, and the superpotential,W .˚i/, are functions
of products of the fields, ˚i, and k D 1 for U.1/ gauge interactions and k D 1

2
for

SU.N/ interactions.
Upon integrating over the Grassmann coordinates we obtain the gauge kinetic

Lagrangian (for f .˚i/ D 1 and renormalizable Kähler potential)1

1.

Lgauge�kinetic D
X
s

�
�1
2
Tr.Fs2

��/C 2iTr.�s� N�� Ds
� �

s/C Tr.Ds2/

�
I
(3.22)

the gauge-matter interactions
2.

Lgauge�matter D
X
i;s

h
i �i N�� Ds

�  i C jDs
��ij2 C jFij2

� .
p
2igs ��

i .�
s  i/C h:c:/ � gs��

i Ds �i

i
; (3.23)

1For a U.1/ gauge theory divide each term in Lgauge�kinetic by a factor of 2.
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and the superpotential terms
3.

LYukawa D Fi
@W

@˚i
j�D0 � 1

2
 i  j

@2W

@˚i @˚j
j�D0 C h:c:: (3.24)

The equations of motion can be used to eliminate the terms containing the auxiliary
fields, Ds and Fi. We then have �F�

i D @W
@˚i

j�D0 and .Ds/a D gs
P

i.�
�
i Ta �i/.

Plugging these solutions of the equations of motion back into the full Lagrangian,
L D Lgauge�kinetic C Lgauge�matter C LYukawa we obtain the scalar potential

V.�i/ D
X
i

jFij2 C 1

2

X
a

..Ds/a/
2: (3.25)

Note, this Lagrangian is supersymmetric with equal masses for the Standard
Model particles and their superpartners. This is clearly inconsistent with low
energy data, since no superpartners have been discovered. Therefore it is necessary
for supersymmetry to be broken. In addition, supersymmetry is an extension
of Poincare invariance. And in the Standard Model, including gravity, Poincare
invariance is a local symmetry, i.e. the consequence of local Poincare invariance
is Einstein’s theory of general relativity. Therefore supersymmetry must also be a
local symmetry, resulting in supergravity. The superpartner of the spin 2 graviton
is a spin 3/2 gravitino. Thus, if we need to break supersymmetry, to give mass
to all the superpartners, we must do it spontaneously. As a consequence of
spontaneously breaking supersymmetry, the gravitino obtains mass via a superHiggs
mechanism. Then all the superpartners obtain mass, either at tree level or via
radiative corrections.

3.4 MSSM Spectrum and Supersymmetric Interactions

The low energy spectrum of the MSSM includes the following:

• For every fermion (quark and lepton) in the SM, there is a supersymmetric scalar

partner (squark (Qq; QNu; QNd) and slepton (Ql; QNe; QN�)) with both chiralities;
• For every gauge boson in the SM, there is a supersymmetric Weyl spinor partner

(gluinos (Qg), winos ( Qw˙; Qw0), bino (Qb));
• Since there are two Higgs doublets in the MSSM, after Hu and Hd obtain VEVs

W˙ and Z0 obtain mass via the Higgs mechanism. There are then fine observable
scalar Higgs states, h; H (CP even Higgs scalars), A0 (CP odd pseudo-scalar)
and H˙ (charged Higgs). In addition for each Higgs doublet state there are

supersymmetric fermionic partners (neutral (Qh0; QNh0) and charged Higgsinos

(QhC; QNh�).
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Fig. 3.1 SM gauge interaction above and new supersymmetric gaugino interactions below

Fig. 3.2 SM Higgs interaction above and new supersymmetric Higgsino interactions below

Left and right-handed squarks and sleptons mix among states with the same
SM charges. Thus there is a 6 � 6 up squark mass matrix and similarly for down
squarks, charged and neutral sleptons. In addition the charged Higgsinos mix with
the charged winos to form mass eigenstates, charginos ( Q�i̇ ; i D 1; 2) and the
neutral Higgsinos mix with the neutral wino and bino to form mass eigenstates,
neutralinos ( Q�0i ; i D 1; 2; 3; 4). The SM and new supersymmetric interactions of
gauginos and Higgsinos are given in Figs. 3.1 and 3.2.



Chapter 4
Soft SUSY Breaking Mechanisms

In this lecture we consider the supersymmetry breaking mechanisms and their
effects on low energy physics. We shall consider only those breaking mechanisms
relevant for supersymmetry in 3C1 space-time dimensions. In later lectures we
shall consider higher dimensional theories. In order to discuss spontaneous SUSY
breaking, we must first discuss the actual symmetry. In the previous lecture we
simply wrote down the most general supersymmetric Lagrangian without specifying
the actual supersymmetry. In fact, the Lagrangian is invariant under global SUSY
transformations

˚ 0.x�; �˛; � �̨/ D ˚.x�0
; � 0̨ ; ��0

˛/ (4.1)

with

x�0 D x� � i.� �� �� � � �� ��/ (4.2)

� 0̨ D �˛ C �˛

��0
˛ D � �̨ C ��̨

where �˛ is a constant Grassmann parameter. Note, SUSY transformations are
translations in superspace. If we expand the chiral superfield out to linear order in
the parameter � we find the transformation law on ordinary fields (with ˚.x; �˛/ D
f�.x/;  ˛.x/; F.x/g) given by

ı�.x/ D p
2.�  .x// (4.3)

ı ˛.x/ D p
2 F.x/ �˛ � i

p
2 .�� ��/˛ @��.x/

ıF.x/ D �p
2i �� N�� @� .x/:

© Springer International Publishing AG 2017
S. Raby, Supersymmetric Grand Unified Theories, Lecture Notes in Physics 939,
DOI 10.1007/978-3-319-55255-2_4
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Similarly for the vector multiplet W˛.x; �/ D fF��.x/; �˛.x/;D.x/g we have

ıF��.x/ D iŒ� �� @� �
�.x/C �� N�� @��.x/� .� $ �/� (4.4)

ı�˛.x/ D i�˛ D.x/C .����/˛ F��.x/

ıD.x/ D �� N�� @��.x/� � ��@��
�.x/:

Note, for both the chiral and vector supermultiplets the auxiliary fields, F.x/; D.x/,
transform as total derivatives. In fact, the F term of any product of chiral superfields
also transforms as a total derivative. This is why the superpotential term and the
gauge kinetic term are, by themselves, supersymmetric since they are given as an F
term of a product of chiral superfields. In addition, any D term of a real superfield
transforms as a total derivative. This is why the Kähler term is also supersymmetric.

We also now see how to spontaneously break supersymmetry. If the vacuum
expectation value of eitherF.x/ or D.x/ are non vanishing space time constants, then
supersymmetry is spontaneously broken. In fact, we can see by taking the vacuum
expectation value of both sides of the transformation (where Q˛ is the Weyl spinor
supercharge)

iŒ.�Q/;  ˛� D p
2 F.x/ �˛ (4.5)

and

iŒ.�Q/; �˛� D i�˛ D.x/; (4.6)

that SUSY is spontaneously broken when hF.x/i D F or hD.x/i D D. Note, as
a result of spontaneous symmetry breaking, the supercurrent creates a massless
Goldstone fermion, called the goldstino, out the vacuum. Moreover, the energy
in the vacuum is non-zero [see Eq. (3.25)]. This is true for global supersymmetry.
When one includes gravity, with local SUSY, then a zero vacuum energy can be
obtained; albeit by fine-tuning.

4.1 SUSY Non-renormalization Theorems

Supersymmetric field theories have special properties which set them apart from all
other field theories. They possess what are known as non-renormalization theorems
which have the following consequences.1

1See problem 2.
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1. There are no vertex corrections (even finite) to the superpotential, W [8]. As a
consequence, renormalization of parameters in the theory are only due to wave
function renormalization.

2. In U.1/ gauge theories, there may be one loop corrections to the Fayet-
Illiopoulos D-term. These corrections are of the form �D � g2

P
i q
2
i �

2

where g is the gauge coupling constant, qi are the U.1/ charges for the chiral
superfields and � is the cut-off. These corrections would produce quadratic
radiative corrections to scalar masses. However, it has been proven [9] that
the radiative corrections to the D-term only exist at one loop. Thus if the one
loop correction vanishes, the corrections to the D-term vanish to all orders in
perturbation theory. In particular, in the MSSM there is no one loop correction
to the U.1/Y D-term, since the sum over the hypercharge of quarks and leptons
vanishes.

3. If SUSY is unbroken at tree level, then it is unbroken to all finite orders in
perturbation theory.

4. There are no quadratic radiative corrections to scalar masses.2 This has been
discussed in the context of solving the gauge hierarchy problem (why is the
weak scale, MW , so much smaller than the Planck scale,MPl) [10, 11] by
Witten [12, 13].

5. In the global supersymmetric limit the vacuum energy vanishes, since

V.�i/ D
X
i

jFij2 C 1

2

X
a

..Ds/a/
2: (4.7)

In a non-renormalizable, SUSY Lagrangian both the Kähler potential and
the superpotential can contain higher dimension operators and the gauge kinetic
function can be non-trivial. In this case, the following notation becomes convenient.
We define derivatives with respect to K by

Ki D @K

@˚i
j�D0; giNj � KiNj D @2K

@˚i @ N̊ j
j�D0 (4.8)

where giNj � KiNj is the Kähler metric. Then the matter kinetic terms are no longer
canonical and the equation for the auxiliary fields become

� F�
i D gNij

@W

@˚j
j�D0 (4.9)

and

.Ds/a D �.Ref .�/�1/abgs
X
i

.Ki Tb �i/: (4.10)

2This assumes the one loop correction to the U.1/ D-term vanishes.
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The vacuum energy is now given by

V.�i/ D
X

iNj
giNj
@W

@˚i
.
@W

@˚j
/� C 1

2

X
ab

.Ref .�//ab .D
s/a .D

s/b: (4.11)

Local supersymmetry is supergravity. In the case of local supersymmetry,
the auxiliary fields become more complicated. We define the Kähler covariant
derivative, Di D @

@�i
C 1

m2Pl
Ki where mPl is the reduced Planck scale, i.e. mPl D

MPl=
p
8� . Then Fi D �eK =2m2Pl giNj DNjW � and the scalar potential becomes

eK =m2Pl ŒDiW giNj DNjW � � 3
1

m2Pl
jW j2�C 1

2

X
ab

.Ref .�//ab .D
s/a .D

s/b: (4.12)

If DiW D 0 and Da D 0, then SUSY is unbroken.3 On the other hand, if for
example DiW ¤ 0 then SUSY is broken spontaneously. As a consequence there is
a superHiggs mechanism. The goldstino is eaten by the gravitino and the spin 3/2
gravitino becomes massive with m3=2 D eK =2m2Pl W

m2Pl
when V.h�i/ D 0.

Historically, the earliest breaking mechanism discussed (in the context of global
SUSY) was either the O’Raifeartaigh mechanism [14] or the Fayet-Iliopoulos [FI]
D term mechanism [15] (see the review article by Fayet and Ferrara [16]).4 In both
cases SUSY breaking effects were transmitted to the Standard Model sector directly.
Without specifying the mechanisms here, this caused two problems. In the case of
the O’Raifeartaigh mechanism it can be shown that the sum over all mass squareds,
i.e.

X
J

.�1/2J.2J C 1/m2J D 0: (4.13)

As a consequence it is easy to see that the lightest SUSY partner of quarks and
leptons was a scalar quark or lepton. Gauginos only obtain mass at the loop level.
In the latter case, with a FI D term, it required the addition of an anomalous U.1/
gauge interaction which is unacceptable.

It was clear, early on, that transmitting SUSY breaking to the SM sector at
tree level was a problem. It was also clear that transmitting SUSY breaking to the
SM sector via loop corrections would solve these problems. Firstly, the supertrace
formula, Eq. (4.13), was only a tree level problem. But in addition, since scalars
suffer from a hierarchy problem which is solved by SUSY, then when SUSY is
broken radiative corrections to scalar masses are expected to be of order ˛

4�
�2

eff
where ˛ is some coupling constant and �eff is the effective SUSY breaking

3Note, if SUSY is unbroken at the tree level and hW i D 0, then the non-renormalization theorems
guarantee that it is still unbroken to any finite order in perturbation theory.
4See problem 3.
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scale. Moreover, gauginos only get radiative corrections to their mass when two
symmetries are broken, supersymmetry and chiral symmetry. Thus one might expect
gauginos to be lighter than scalars.

The two mechanisms for transmitting SUSY breaking in four space-time dimen-
sions are gauge-mediated SUSY breaking [17–27] and gravity mediated SUSY
breaking (with a special case given by gaugino condensation [28]).5 In all cases,
SUSY is typically broken in a hidden sector by a perturbative or non-perturbative
O’Raifeartaigh and/or Fayet-Iliopoulos type mechanism and then transmitted to the
visible sector by messenger fields through radiative corrections due to the SM gauge
interactions or directly via gravity.6

The consequence of spontaneous SUSY breaking in the effective low energy
theory, i.e. at energies much below the messenger scale, is soft SUSY breaking
corrections to the MSSM Lagrangian. These soft SUSY breaking terms were first
considered in [29] and studied in great detail by Girardello and Grisaru [30] who
showed that the soft breaking terms preserve the property of no quadratic corrections
to scalar masses.

4.2 Soft SUSY Breaking Lagrangian

The soft SUSY breaking terms considered in the MSSM are as follows:

� Lsoft D Qq� m2q Qq C QNu� m2Nu QNu C QNd� m2Nd QNd C Ql� m2l Ql C QNe� m2Ne QNe C QN�� m2Nn QN� (4.15)

Cm2hu H
�
u Hu C m2hd H

�
d Hd

C�˛ˇ QNei Aij
e

Ql˛j Hˇ
d C �˛ˇ

QNdi Aij
d Qq˛j Hˇ

d C �˛ˇ QNui Aij
u Qqˇj H˛

u

C�˛ˇ QN�i Aij
�

Qlˇj H˛
u � 1

2
B� Mij QN�i QN�j � B � �˛ˇ H˛

u Hˇ
d

�1
2
M3 �

A �A � 1

2
M2 �

a �a � 1

2
M1 � �:

The scalar masses squared matrices are hermitian, the A parameters are, in
general, arbitrary 3 � 3 complex matrices with dimensions of mass and B�; B

5Anomaly mediated SUSY breaking will be considered in the context of orbifold SUSY GUTs in
Sect. 17.
6In supergravity Eq. (4.13) receives an important correction, i.e. for a flat Kähler potential it
becomes

X
J

.�1/2J .2J C 1/m2J D 4m23=2: (4.14)
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and the gaugino masses Mi; i D 1; 2; 3 all have dimensions of mass. In addition
all dimensionful parameters are assumed to be of order the weak scale. We will
be more precise regarding the soft SUSY breaking parameters when we discuss
phenomenology (see Chap. 7).

For now we define the so-called constrained MSSM [CMSSM] parameters.
These are taken to be values defined at a GUT scale. We have universal

• scalar mass:

m2qjMG D m2ujMG D m2djMG D m2l jMG D m2e jMG D m2njMG � m20 13�3I (4.16)

• A parameter:

Aij
u D A0 Y

ij
u ; Aij

d D A0 Y
ij
d ; Aij

e D A0 Y
ij
e ; Aij

� � A0 Y
ij
� ; (4.17)

and
• gaugino mass: M1 D M2 D M3 � M1=2 .

In the CMSSM, the Higgs mass parameters are universal and equal to m0. However
there are simple generalizations of the CMSSM with non-universal Higgs masses
[NUHM].

• In NUHM1 we have m2Hu
D m2Hd

¤ m20 and
• in NUHM2 we have m2Hu

¤ m2Hd
are both independent of m20.

Finally, in any MSSM there is necessarily a gravitino mass parameter, m3=2.
In the next lecture, we will review grand unified theories [GUTs]. There are also

several good references for GUTs, see for example [31, 32].



Chapter 5
Introduction to SU.5/ and SO.10/ GUTs

5.1 Two Roads to Grand Unification

One can first unify quarks and leptons into two irreducible representations of the
group SU.4/C ˝ SU.2/L ˝ SU.2/R, i.e. the so-called Pati-Salam group [33–35]
where lepton number is the fourth color.

Then the PS fields

Q D .q l/; NQ D .Nq Nl/ (5.1)

where

Nq D
� Nu

Nd
�
; Nl D

� N�
Ne
�

(5.2)

transform as .4; 2; 1/˚.N4; 1; N2/ under PS. One can check that baryon number minus
lepton number acting on a 4 of SU.4/ is given by

B � L D

0
BB@

1
3
1
3
1
3

�1

1
CCA (5.3)

and similarly electric charge is given by

Q D T3L C T3R C 1

2
.B � L/: (5.4)

© Springer International Publishing AG 2017
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Note, charge is quantized since it is embedded in a non-abelian gauge group. One
family is contained in two irreducible representations. Finally, if we require parity
(L $ R) then there are two independent gauge couplings.

What about the Higgs? The two Higgs doublets Hu; Hd are combined into one
irreducible PS Higgs multiplet (represented as a 2 � 2 matrix)

H D .Hd; Hu/ (5.5)

transforming as a .1; 2; N2/ under PS. Thus for one family, there is a unique
renormalizable Yukawa coupling given by

� NQ H Q (5.6)

giving the GUT relation

�t D �b D �	 D ��	 � �: (5.7)

Now Pati-Salam is not a grand unified gauge group. However, since SU.4/ �
SO.6/ and SU.2/ ˝ SU.2/ � SO.4/ (where � signifies a homomorphism), it is
easy to see that PS � SO.6/ ˝ SO.4/ 	 SO.10/ [36, 37]. In fact one family of
quarks and leptons is contained in the spinor representation of SO.10/ (for more
details, see Sect. 5.7), i.e.

SO.10/ ! SU.4/C ˝ SU.2/L ˝ SU.2/R

16 ! .4; 2; 1/˚ .N4; 1; N2/: (5.8)

Hence by going to SO.10/ we have obtained quark-lepton unification (one family
contained in one spinor representation) and gauge coupling unification (one gauge
group) (see Table 5.1).

But I should mention that there are several possible breaking patterns for SO.10/.

SO.10/ ! SU.4/C ˝ SU.2/L ˝ SU.2/R

! SU.5/˝ U.1/X

! SU.5/0 ˝ U.1/X0

! SU.3/C ˝ U.1/.B�L/ ˝ SU.2/L ˝ SU.2/R: (5.9)

In order to preserve a prediction for gauge couplings we would require the breaking
pattern

SO.10/ ! SM (5.10)

or

SO.10/ ! SU.5/ ! SM: (5.11)
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Table 5.1 Spinor
representation of SO.10/
where this table explicitly
represents the Cartan-Weyl
weights for the states of one
family of quarks and leptons

Grand Unification � SO(10)

Y Color Weak

State D � 2
3
˙.C/C˙.W/ C spins W spins

N� 0 � �;� � �
Ne 2 � � � C C
ur 1=3 C � � � C
dr 1=3 C � � C �
ub 1=3 � C � � C
db 1=3 � C � C �
uy 1=3 � � C � C
dy 1=3 � � C C �
Nur �4=3 � C C � �
Nub �4=3 C � C � �
Nuy �4=3 C C � � �
Ndr 2=3 � C C C C
Ndb 2=3 C � C C C
Ndy 2=3 C C � C C
� �1 C C C � C
e �1 C C C C �

The double lines separate irreducible representations of SU.5/

5.2 Introduction to SU.5/

It will be convenient at times to work with the Georgi-Glashow GUT group SU.5/
[38, 39]. We have 16 ! 10 ˚ N5 ˚ 1. Let’s identify the quarks and leptons of one
family directly. We define the group SU.5/ by

SU.5/ D fUjU D 5 � 5 complex matrixIU�U D 1I detU D 1g (5.12)

and the fundamental representation 5˛; ˛ D 1; : : : ; 5 transforms as

50˛ D U˛
ˇ 5

ˇ: (5.13)

We represent the unitary matrix U by

U D exp.iTA !A/ (5.14)

where Tr.TA/ D 0; T�A D TA, A D 1; : : : ; 24 and ŒTA; TB� D ifABC TC with fABC the
structure constants of SU.5/. Under an infinitesimal transformation, we have

ıA5
˛ D i.TA/

˛
ˇ 5

ˇ !A: (5.15)
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Let us now identify the SU.3/˝ SU.2/˝ U.1/Y subgroup of SU.5/. The SU.3/
subgroup is given by the generators

TA D
 
1
2
�A 0

0 0

!
; A D 1; : : : ; 8: (5.16)

And the SU.2/ subgroup is given by

TA D
 
0 0

0 1
2
	.A�20/

!
; A D 21; 22; 23: (5.17)

The generators in SU.5/=SU.3/˝ SU.2/˝ U.1/Y are given by

TA; A D 9; : : : ; 20: (5.18)

These are 12 generators of the form

1

2

0
BBBBB@

0

1 0

0 0

0 0

1 0 0

0 0 0
0

1
CCCCCA
;

1

2

0
BBBBB@

0

�i 0
0 0

0 0

i 0 0
0 0 0

0

1
CCCCCA
: (5.19)

Let us now identify the hypercharge Y. The only remaining generator of SU.5/
commuting with the generators of SU.3/ and SU.2/ is given by

T24 D
r
3

5

0
BBBBB@

�1=3 0 0

0 �1=3 0

0 0 �1=3
0

0
1=2 0

0 1=2

1
CCCCCA

�
r
3

5

Y

2
: (5.20)

The overall normalization is chosen so that all the SU.5/ generators satisfy
Tr.TA TB/ D 1

2
ıAB:

With these identifications, we see that the quantum numbers of a

5˛ D
�
da

Nli
�
; a D 1; 2; 3I i D 4; 5 (5.21)

where da transforms as .3; 1;�2=3/ and li transforms as .1; 2;C1/ under the SM.
Of course these are not correct quantum numbers for any of the quarks and leptons,
but the charge conjugate states are just right. We have

N5˛ D
� Nda

l0i

�
; a D 1; 2; 3I i D 4; 5 (5.22)
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with transformation properties

Nd D .N3; 1; 2=3/; l0 D .1; N2;�1/ (5.23)

and

l0 D
��e
�

�
: (5.24)

Once we have identified the states of the N5, we have no more freedom for the 10.1

The 10 transforms as an anti-symmetric tensor product of two 5s, i.e.

10˛ˇ D �10ˇ˛ / 5˛1 5
ˇ
2 � 5˛2 5ˇ1 : (5.25)

We find

10ab � �abc.Nu/c D .N3; 1;�4=3/
10ai � qai D .3; 2; 1=3/

10ij � �ij Ne D .1; 1;C2/: (5.26)

To summarize we find

N5˛ D

0
BBBBB@

Nd1
Nd2
Nd3

�e
�

1
CCCCCA
; 10˛ˇ D 1p

2

0
BBBBB@

0 Nu3 �Nu2
�Nu3 0 Nu1
Nu2 �Nu1 0

u1 d1

u2 d2

u3 d3

�u1 �u2 �u3

�d1 �d2 �d3
0 Ne

�Ne 0

1
CCCCCA
: (5.27)

What about the Higgs doublets. Clearly since the smallest representation of
SU.5/ is five dimensional we need to extend the Higgs sector and add color triplet
Higgs bosons. We define

H D
�

T
Hu

�
; NH D

� NT
H0

d

�
(5.28)

transforming as a 5 and N5 and .H0
d/˛ � �˛ˇ Hˇ

d D
��Nh�

Nh0
�

.

1See problem 4.
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Now that we have identified the states of one family in SU.5/, let us exhibit the
fermion Lagrangian (with gauge interactions). We have

Lfermion D N5�˛i. N�� D�/˛
ˇ N5ˇ C 1

2
10˛ˇ

�
i. N�� D�/˛ˇ�ı 10

�ı (5.29)

where

D� D @� C ig5TA A�A (5.30)

and TA is in the N5 or 10 representation. We see that since there is only one gauge
coupling constant at the GUT scale we have

g3 D g2 D g1 � g5 (5.31)

where, after weak scale threshold corrections are included, we have

g3 ! gs; g2 ! g; g1 !
r
5

3
g0: (5.32)

At the GUT scale we have the relation

sin2 �W D .g0/2

g2 C .g0/2
D 3=8: (5.33)

This result then gets renormalized to the weak scale, where it is measured.

5.3 Spontaneous Breaking of SU.5/ to the SM

We have assumed that SU.5/ is spontaneously broken via a Higgs mechanism to
the Standard Model. The simplest way to accomplish this is to add a new Higgs
multiplet in the adjoint representation of SU.5/. Consider adding the real scalar
fields, ˙A, and ˙ D P24

AD1 ˙A TA. Then construct a scalar potential such that
h˙i � MG T24. Since, under an SU.5/ transformation U, we have ˙ 0 D U ˙ U�,
it is easy to see that the unbroken gauge symmetry is SU.3/� SU.2/� U.1/Y . The
only other requirement is that the only massless sector after symmetry breaking is
the Standard Model matter sector. Thus one also needs to couple ˙ to the Higgs,
5 and N5 in such a way that only the Higgs doublets are light, while the color triplet
Higgs have mass greater than of order 1010 GeV [40–42]. This is because the color
triplet Higgs scalars also mediate proton decay. However, they only couple to quarks
and leptons proportional to small Yukawa couplings. For example the˙ Lagrangian
may be of the form

L˙ D Tr.D� ˙/
2 � Tr.˙2 � M2

G/
2 (5.34)

�.� H� ˙ H C N� NH ˙ NH�/ � m2H H� H � m2NH NH� NH
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where the terms containing the Higgs fields have to be fine tuned to obtain light
Higgs doublets and heavy color triplet Higgses.2

5.4 Gauge Coupling Unification Without SUSY

The tree level relations, Eq. (5.31), do not take into account threshold corrections at
either the GUT or the weak scales or renormalization group [RG] running from the
GUT scale to the weak scale [39, 43–46]. Consider first RG running. The one loop
RG equations are given by

d˛i
dt

D � bi
2�
˛2i (5.35)

where ˛i D g2i
4�
; i D 1; 2; 3 and

bi D 11

3
C2.Gi/� 2

3
TR NF � 1

3
TR NS: (5.36)

Note, t D � ln.MG
�
/, and given

X
A

.T2A/ D C2.Gi/1 (5.37)

with TA in the adjoint representation, this defines the quadratic Casimir for the group
Gi with C2.SU.N// D N and C2.U.1// D 0.

Tr.TATB/ D TR ıAB (5.38)

for TA in the representation R (for U.1/Y , TR � 3
5
Tr. Y

2

4
/) and NF.NS/ is the number

of Weyl fermions (complex scalars) in representation R. The solution to the one loop
RG equations is given by

˛i.MZ/
�1 D ˛�1

G � bi
2�

ln.
MG

MZ
/: (5.39)

For the SM we find

bSM � .b1; b2; b3/ D .�4
3
Nfam� 1

10
NH ;

22

3
� 4
3
Nfam� 1

6
NH ; 11� 4

3
Nfam/ (5.40)

where Nfam.NH/ is the number of families (Higgs doublets).

2See problem 5.
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The one loop equations can be solved for the value of the GUT scale MG and
˛G in terms of the values of ˛EM.MZ/ and sin2 �W.MZ/. We have (without including
weak scale threshold corrections)

˛2.MZ/ D ˛EM.MZ/

sin2 �W.MZ/
; ˛1.MZ/ D

5
3
˛EM.MZ/

cos2 �W.MZ/
(5.41)

and we find
�
3

5
� 8

5
sin2 �W.MZ/

�
˛EM.MZ/

�1 D .
b2 � b1
2�

/ ln.
MG

MZ
/ (5.42)

which we use to solve for MG. Then we use

˛�1
G D sin2 �W.MZ/ ˛EM.MZ/

�1 C b2
2�

ln.
MG

MZ
/ (5.43)

to solve for ˛G. We can then predict the value for the strong coupling using

˛3.MZ/
�1 D ˛�1

G � b3
2�

ln.
MG

MZ
/: (5.44)

See Fig. 5.1 for the one loop running of the gauge couplings in the Standard Model
and in the Minimal Supersymmetric Standard Model.

Given the experimental values sin2 �W.MZ/ � 0:23 and ˛EM.MZ/
�1 � 128 we

find MG � 1:3�1013 GeV with NH D 1 and ˛�1
G � 42 for the SM with the one loop

prediction for ˛3.MZ/ � 0:07. How well does this agree with the data? According

Fig. 5.1 One loop running of the gauge couplings in the Standard Model and in the MSSM



5.5 Fermion Mass Relations in SU.5/ 33

to the PDG the average value of ˛s.MZ/ D 0:1185 ˙ 0:0006 [47]. So at one loop
non-SUSY GUTs are clearly excluded.3

5.5 Fermion Mass Relations in SU.5/

Up and down quark Yukawa couplings at MGUT are given in terms of the operators

� LYukawa � 1

4
.Yu/

ij 10
˛ˇ
i 10

�ı
j H� �˛ˇ�ı� C .Yd/

ij NH˛ 10˛ˇi N5jˇ: (5.45)

When written in terms of quark and lepton states we obtain the Yukawa couplings
to the Higgs doublets

� LYukawa � .Yu/
ij Nui qj Hu C .Yd/

ij . Ndj qi C Nei l0j/ H0
d: (5.46)

We see that SU.5/ relates the Yukawa couplings of down quarks and charged
leptons, i.e. �d D �e at the GUT scale. Assuming this relation holds for all three
families, we have [49, 50] (for SUSY SU.5/ see [51–54]) �b D �	 ; �s D
��; �d D �e at MGUT .

To compare with experiment we must use the renormalization group[RG]
equations to run these relations (valid at MGUT ) to the weak scale. The first relation
gives a prediction for the b-	 ratio which is in good agreement with low energy data.
Note, for heavy top quarks we must now use the analysis which includes the third
generation Yukawa couplings [52]. We will discuss these results shortly. The next
two relations can be used to derive the relation: �s

�d
D ��

�e
at MGUT . However at one

loop the two ratios are to a good approximation RG invariants. Thus the relation is
valid at any scale � < MGUT . This leads to the bad prediction

ms

md
D m�

me

for running masses evaluated at 2 GeV. It is a bad prediction since experimentally
the left hand side is �20 while the right hand side is �200.

An ingenious method to fix this bad relation was proposed by Georgi and
Jarlskog [55]. They show how to use SU.5/ Clebschs in a novel texture for fermion
Yukawa matrices to keep the good relation �b D �	 , and replace the bad relation
above by the good relation

ms

md
D 1

9

m�
me
: (5.47)

3Large threshold corrections at the GUT scale due to large representations of the GUT symmetry
breaking sector of the theory can in principle save the GUT prediction for gauge coupling
unification of non-supersymmetric theories [48].
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Consider the 3 � 3 Yukawa matrices for down quarks and charged leptons of the
form

Yd D �

0
@
0 B 0
B A 0
0 0 1

1
A (5.48)

Ye D �

0
@
0 B 0

B �3A 0
0 0 1

1
A : (5.49)

If B 
 A, then the eigenvalues satisfy

�b D �	 ; �s D 1

3
��; �d D 3�e: (5.50)

Thus we now obtain the result of Eq. (5.47). Note, the relative factor of 3 in the
2 � 2 term for leptons as compared to down quarks can be due to an additional
Higgs in the 45 or 75 dimensional representations of SU.5/ or to a Higgs in the 45
dimensional representation of SO.10/ (see Sect. 9).

In order to discuss neutrino masses in the context of SU.5/we can easily arrange
a See-Saw mechanism by adding three sterile neutrinos, N�i; i D 1; 2; 3, transforming
as SU.5/ singlets. Then we add to our Yukawa couplings the terms

.Y�/
ij N�i N5j˛ H˛ � 1

2
Mij N�i N�j: (5.51)

5.6 Nucleon Decay

Baryon number is necessarily violated in any GUT [56]. In SU.5/, nucleons decay
via the exchange of gauge bosons with GUT scale masses, resulting in dimension
6 baryon number violating operators suppressed by .1=M2

G/. The nucleon lifetime
is calculable and given by 	N / M4

G=.˛
2
G m5p/. The dominant decay mode of the

proton (and the baryon violating decay mode of the neutron), via gauge exchange,
is p ! eC �0 (n ! eC ��). In any simple gauge symmetry, with one universal
GUT coupling and scale (˛G; MG), the nucleon lifetime from gauge exchange is
calculable. Hence, the GUT scale may be directly observed via the extremely rare
decay of the nucleon. In non-SUSY GUTs the GUT scale is of order 1013�15 GeV.
Hence the dimension 6 baryon violating operators mediate nucleon decay with 	p 

1028�32 years. This is ruled out by the present bounds from Super-Kamiokande,
	p � 1034 years.
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In order to get the terms in the Lagrangian which involve X and Y gauge bosons,
we will use the decomposition of the relevant representations under the SM gauge
group.4

N5 ! .N3; 1/�2=3 C .1; N2/�1; (5.52)

10 ! .3; 2/1=3 C .N3; 1/�4=3 C .1; 1/2; (5.53)

24 ! .8; 1/0 C .1; 3/0 C .1; 1/0 C .3; N2/�5=3 C .N3; 2/5=3: (5.54)

The only renormalizable gauge invariant couplings that involve the adjoint repre-
sentation are

L � N5 24 5 C 10 24 10: (5.55)

Then we can decompose these terms into their SM representations, and select the
interesting terms. From

N5 24 5 ! �
.N3; 1/2=3 C .1; 2/�1

� � �� � � C .3; N2/�5=3 C .N3; 2/5=3
�

� �.3; 1/�2=3 C .1; 2/1
�

(5.56)

we see that the only gauge invariant combination is

.N3; 1/2=3 � .3; N2/�5=3 � .1; 2/1 C h:c: (5.57)

Likewise, the 10 24 10 term gives us

.N3; 1/�4=3 � .N3; 2/5=3 � .N3; N2/�1=3 C .3; 2/1=3 � .N3; 2/5=3 � .1; 1/�2 C h:c: (5.58)

We can also see this by explicitly writing out the couplings in terms of matrices.
The fermion representations are given by

N5 D

0
BBBBB@

Nd1
Nd2
Nd3

�e
�

1
CCCCCA
; 10 D 1p

2

0
BBBBB@

0 Nu3 �Nu2 u1 d1
�Nu3 0 Nu1 u2 d2
Nu2 �Nu1 0 u3 d3

�u1 �u2 �u3 0 Ne
�d1 �d2 �d3 �Ne 0

1
CCCCCA

(5.59)

4See for example, Slansky [57], p. 96, Table 30.
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The factor of 1p
2

in front of the 10 gives us a canonically normalized kinetic term.
The adjoint looks like

24 D

0
BBBBB@

X1 Y1
X2 Y2
X3 Y3

X�1 X
�
2 X

�
3

Y�1 Y
�
2 Y

�
3

1
CCCCCA
; (5.60)

where we have only written down the X and Y part.
From Eq. (5.57), we have

.N3; 1/2=3 � .3; N2/�5=3 � .1; 2/1 � e�X�a Nda � ��Y�a Nda: (5.61)

The other terms come from Eq. (5.58), but we have to be careful. We need to make
sure that we antisymmetrize over all of the color indices in the .N3; 1/�4=3�.N3; 2/5=3�
.N3; 2/�1=3 case:

.N3; 1/�4=3 � .N3; 2/5=3 � .N3; N2/�1=3 � �abc
h
NuaX��b d�

c � NuaY��b u�
c

i
: (5.62)

Finally from .3; 2/1=3 � .N3; 2/5=3 � .1; 1/�2 we have

.3; 2/1=3 � .N3; 2/5=3 � .1; 1/�2 � .Ne/�Y��a ua � .Ne/�X��a da (5.63)

Now it’s easy to write down the charged currents to which the bosons couple. Note
that a; b; c are SU(3) indices, and i; j are SU(2) indices:

J�ai D .li/
� N�� Nda C �abc�ij.Nub/� N��qcj C �ij.q

a
j /

� N�� Ne;
) J� D .l/� N�� Nd C .Nu/� N��q C .q/� N�� Ne; (5.64)

where color and SU(2) indices are understood in the last line and we define the
iso-doublet gauge field

.X�/ia D
�
X�a
Y�a

�
: (5.65)

The effective lagrangian coupling the gauge bosons to the charged currents is
then given by

Lcc D gGUTp
2
X�J� C h:c:: (5.66)
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Any (tree level) process that we’ll be interested in will involve the exchange of an
X or Y gauge boson. As in the Fermi theory, we will make the substitution for the
propagator

�1
p2 � M2

X

D 1

M2
X

1

1 � p2

M2
X

D 1

M2
X

�
1C O

�
p2

M2
X

�	
: (5.67)

Integrating out the X boson leaves us with

Leff D g2GUT

2M2
X

J�J�
�: (5.68)

In Fig. 5.2 we show a representative Feynman diagram describing the decay of a
proton to two different possible final states. Replacing the spectator up quark by a
down quark, one obtains a baryon and lepton number violating neutron decay. Note,
in order to calculate the nucleon decay rate one must first renormalize the dimension
6 operator down to the weak scale. Apply all weak scale threshold corrections and
then further renormalize down to the nucleon mass scale. Finally, one uses chiral
Lagrangian analysis to evaluate the expectation value of the three quark operator
between the hadronic vacuum and the nucleon.

Fig. 5.2 Proton decay via dimension 6 operators
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5.7 Introduction to SO.10/

For a nice review of SO.10/ group theory, see for example, the last two chapters of
Georgi, “Lie Algebras in Particle Physics” [58]. The defining representation is a ten
dimensional vector denoted by 10i; i D 1; � � � ; 10. SO.10/ is defined by the set of
real orthogonal transformations Oij W OTO D 1 such that 100

i D Oij10j. Infinitesimal
SO.10/ rotations are given by O D 1C i Q! with Q!T D � Q!. We can always express
the 10 � 10 antisymmetric matrix Q! in the canonical form Q!ij � !ab˙

ab
ij . !ab are

45 real infinitesimal parameters satisfying !ab D �!ba and ˙ab
ij D i.ıai ı

b
j � ıaj ı

b
i /

are the 45 generators of SO.10/ in the 10 dimensional representation. Note that the
antisymmetric tensor product .10 � 10/A � 45 is the adjoint representation.

The SO.10/ generators satisfy the Lie algebra

Œ˙ab; ˙ cd�ik � ˙ab
ij ˙

cd
jk �˙ cd

ij ˙
ab
jk D Œ˙ad

ik ıbc �˙ac
ik ıbd C˙bc

ik ıad �˙bd
ik ıac�:

(5.69)

The adjoint representation transforms as follows : 450
ij D OikOjl45kl or 450

ij D
.O 45 OT/ij.

In general the tensor product .10� 10/ D .10� 10/A C .10� 10/S D 45C 54C
1. The 54 dimensional representation is denoted by the symmetric tensor 54ij D
54ji; Tr.54/ D 0 with transformations 540 D O 54 OT .

The spinor representation of SO.10/ can be defined in terms of 25 � 25

dimensional representations of a Clifford algebra � a; a D 1; � � � ; 10 , just as for
example the spinor representation of SO(4) is represented in terms of 4 � 4 Dirac
gamma matrices. The � s can be given by a tensor product of five Pauli matrices—

�1 D �12 �
2
3 �

3
3 �

4
3 �

5
3 �2 D ��11 �23 �33 �43 �53 (5.70)

�3 D 11�22 �
3
3 �

4
3 �

5
3 �4 D �11�11 �

3
3 �

4
3 �

5
3

�5 D 1112�32 �
4
3 �

5
3 �6 D �1112�31 �

4
3 �

5
3

�7 D 111213�42 �
5
3 �8 D �111213�41 �

5
3

�9 D 11121314�52 �10 D �11121314�51

satisfy � a� D � a; f� a; � bg D 2ıab. We can also define � 11 �
.�i/5

Q10
aD1 � a D Q5

jD1 �
j
3 satisfying f� 11; � ag D 0 for all a. The generators

of SO.10/ in the spinor representation are now given by

˙ab D i

4
Œ� a; � b�: (5.71)

Note Œ� 11; ˙ab� D 0 and .� 11/2 D 1. Hence � 11 has eigenvalues ˙1 which
divides the 32 dimensional spinor into two irreducible representations of SO.10/
which are the 16 and 16 spinor representations.
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In order to generate some intuition on how SO.10/ acts on the spinor repre-
sentations, we use the gamma matrices to define operators satisfying a Heisenberg
algebra of creation and annihilation operators. Let

A˛ D � 2˛�1 C i� 2˛

2
; ˛ D 1; � � � ; 5 (5.72)

and

A�˛ D � 2˛�1 � i� 2˛

2
: (5.73)

The As satisfy fA˛; Aˇg D 0; fA˛; A�ˇg D ı˛ˇ: We could now rewrite the

generators of SO.10/ explicitly in terms of products of As and A�s. Instead of
doing this let me directly identify an SU.5/ subgroup of SO.10/. In fact the set
of generators f˙abg are equivalent to the set of generators fQA; �˛ˇ; �

�

˛ˇ; Xg
defined by

QA D A�˛
�A˛ˇ

2
Aˇ; A D 1; � � � ; 2 (5.74)

where �A˛ˇ are the 5�5 traceless hermitian generators of SU.5/ in the 5 dimensional
representation. It is then easy to see that the Qs satisfy the Lie algebra of SU.5/,
ŒQA; QB� D ifABC QC. Define

�˛ˇ D A˛Aˇ D ��ˇ˛; �
�

˛ˇ D A�ˇA
�
˛ D ���

ˇ˛: (5.75)

Finally, we define

X D �2
5X

˛D1
.A�˛A˛ � 1

2
/; (5.76)

the U.1/ generator which commutes with the generators of SU.5/.
Let us now define the 16; 16 representations explicitly. Consider first the 16

which contains a 10C N5C1 under SU.5/. Let j0i � j1i � Œ0� be the SU.5/ invariant
state contained in the 16, such that QAj0i � 0. It is thus the vacuum state for the
annihilation operators A˛ (i.e. A˛j0i � 0). It is thus an SU.5/ singlet and also a zero
index tensor under SU.5/ transformations. We now have ��

˛ˇj0i D j10i˛ˇ D Œ2�,

i.e. a 2 index antisymmetric tensor or a 10 under SU.5/. Finally, �˛ˇ�ı��
�

˛ˇ�
�

�ıj0i D
j5i� D Œ4�. Thus, in summary, we have defined the 16 D 10 C N5 C 1 by

j1i D j0i; j10i˛ˇ D �
�

˛ˇj0i; j5i� D �˛ˇ�ı��
�˛ˇ���ıj0i: (5.77)
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Similarly the 16 D 10 C 5 C 1 is defined by

j5i˛ D A�˛j0i; j10iı D �˛ˇ�ı�
�

˛ˇA
�
� j0i; j1i D �˛ˇ�ı�

�

˛ˇ�
�

�ıA
�
j0i: (5.78)

SO.10/ is a rank 5 group, meaning there are 5 U.1/ generators in the Cartan
subalgebra. The five generators can be defined as:

˙12 D i

4
Œ� 1; � 2� � .A�1A1 � 1=2/; (5.79)

˙34 D i

4
Œ� 3; � 4� � .A�2A2 � 1=2/;

˙56 D i

4
Œ� 5; � 6� � .A�3A3 � 1=2/;

˙78 D i

4
Œ� 7; � 8� � .A�4A4 � 1=2/;

˙9 10 D i

4
Œ� 9; � 10� � .A�5A5 � 1=2/:

The first 3 act on color indices and the last two act on weak indices. Thus the SU.5/
invariant U.1/ generator in the 16 dimensional representation is given by

X D �2
5X

˛D1
.A�˛A˛ � 1=2/ D �2.˙12 C˙34 C˙56 C˙78 C˙910/: (5.80)

The 10 dimensional representation can be expressed in terms of a .5�5/˝.2�2/
tensor product notation. We can use the above formula to write an expression for X
in this basis. We find

X D 2x ˝ �

where

x D

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCCA

and

� D
�
0 �i
i 0

�
D �2: (5.81)
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Similarly we can identify the other U.1/s which commute with SU.3/ � SU.2/ �
U.1/Y :

Y D �2
3

3X
˛D1

.A�˛A˛ � 1=2/C
5X

˛D4
.A�˛A˛ � 1=2/jon16 D y ˝ �jon10 (5.82)

where y D

0
BBBBB@

2=3 0 0 0 0

0 2=3 0 0 0

0 0 2=3 0 0

0 0 0 �1 0

0 0 0 0 �1

1
CCCCCA

;

B � L D �2
3

3X
˛D1

.A�˛A˛ � 1=2/jon16 D 2

3
.b � l/˝ � (5.83)

where .b � l/ D

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCA

; and

T3R D �1
2

5X
˛D4

.A�˛A˛ � 1=2/jon16 D 1

2
t3R ˝ � (5.84)

where t3R D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCCA

.

It is a useful exercise to use the definition of the 16 defined above and the
definition of Y in terms of number operators to identify the hypercharge assignments
of the states in the 16.

Note that we will use fields in the adjoint (45) representation to break SO.10/
to the SM. A 45 vev in the X direction will break SO.10/ to SU.5/ � U.1/X. The
vev of a 16 C 16 in the � directions can then break X leaving SU.5/ invariant. We
could then use a 45 with vev in either the Y;B � L or T3R directions to break SU.5/
to SU.3/ � SU.2/ � U.1/Y . Note also that either .X;Y/ or .B � L;T3R/ span the 2
dimensional space of U.1/s which commute with SU.3/� SU.2/� U.1/Y .

Finally, in an SO.10/ SUSY GUT the 16 of SO.10/ contains one family of
fermions and their supersymmetric partners. The 10 of SO.10/ contains a pair of
Higgs doublets necessary to do the electroweak symmetry breaking. Under SU.5/
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we have 10 D 5C N5. The simplest dimension 4 Yukawa coupling of the electroweak
Higgs to a single family (consider the third generation) is given by

� 163 10 163: (5.85)

The SO.10/ symmetry relation which follows is

�t D �b D �	 D ��	 D �: (5.86)

For example, see [59–61] (for SUSY SO.10/ see [62–71]).



Chapter 6
SUSY GUTs

In order to construct a supersymmetric grand unified theory, we need to convert
all the fields of the previous lecture into superfields. For SU.5/ we have the chiral
superfields containing the SM fermions and Higgses,

N5i. y; �/; 10i. y; �/; NNi. y; �/; H. y; �/; NH. y; �/ (6.1)

with the family index, i D 1; 2; 3, and we have suppressed the SU.5/ indices.
In addition, there are the gauge boson superfields, V D VA TA and gauge field
strength superfield W˛. y; �/. The GUT symmetry is assumed to be broken at the
unification scale. Let’s first consider GUT symmetry breaking and Higgs doublet-
triplet splitting, followed by a discussion of gauge coupling unification and nucleon
decay. We shall see that the latter issues are coupled.

The SU.5/ SUSY GUT Lagrangian contains three terms.

Lgauge�kinetic D Œ
1

8 g2G

Z
d2�Tr.W G˛ W G

˛/C h:c:�; (6.2)

Lgauge�matter D Œ
R
d4�K � where the renormalizable Kähler potential is given by

K D
X
i

h
10�i expŒ�2 gG VG� 10i C N5�i expŒ�2 gG VG� N5i C NN�i NNi

i
(6.3)

C.H� expŒ�2 gG VG� H C NH� expŒ�2 gG VG� NH/C � � � ;

and the superpotential

W �1
4
.Yu/

ij 10˛ˇi 10�ıj H� �˛ˇ�ı�C.Yd/ij NH˛ 10˛ˇi N5jˇC.Y�/ij NNi H
˛ N5j˛� 1

2
Mij NNi NNj:

(6.4)

Note, the superpotential is of the same form as in Eqs. (5.45) and (5.51).
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6.1 GUT Symmetry Breaking

Consider first SU.5/where the simplest GUT breaking sector was proposed [29, 72].
A chiral superfield, ˙ , in the adjoint representation of SU.5/ is introduced with
superpotential

W D �

3
Tr.˙/3 � M

2
Tr.˙/2 C NH .�0 ˙ � M0/ H: (6.5)

The solution to the F-term equations for ˙ are given by

� F�̇ D � .˙2 � 1

5
Tr.˙/2 1/ � M ˙ D 0; (6.6)

is

˙ D
p
60

�
M T24: (6.7)

This solution provides a supersymmetric solution with DA D 0 for all A which
breaks SU.5/ ! SU.3/� SU.2/� U.1/Y .1 Then if we choose

M0 D 3
�0

�
M; (6.8)

the Higgs doublets are massless while the color triplet Higgses have a supersymmet-
ric mass term given by the term in the superpotential, �5 �0

�
M NT T. It is easy to see

that only the states in the MSSM are present in the low energy theory below the GUT
scale of order M=�. The breaking of SU.5/ to the SM gauge group is quite natural.
However, splitting the Higgs doublets and triplets requires fine-tuning parameters
in the Lagrangian, in particular, see the relation in Eq. (6.8). Unfortunately this fine-
tuning spoils the solution to the gauge hierarchy problem or why MZ << MGUT .
This is another manifestation of the � problem discussed earlier.

There are “natural” solutions to the problem of doublet-triplet splitting [73, 74];
the so-called missing doublet mechanism in SU.5/ and the missing vev mechanism
in SO.10/. We will save the discussion of these mechanisms and also the breaking
of SO.10/ for later. For now let us discuss gauge coupling unification.

1Note, there are other solutions which break SU.5/ to SU.4/ � U.1/ or keep SU.5/ unbroken.
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6.2 Gauge Coupling Unification

Now let us consider gauge coupling unification in the context of a supersymmetric
theory. The only difference is that now we need to include all the new superpartners
in the RG equations below the GUT scale and above the supersymmetry breaking
scale. The general one loop RG equations are found in Eq. (5.36). For N = 1
supersymmetric theories, Eq. (5.36) can be made more compact. We have

bi D 3C2.Gi/ � TR N� (6.9)

where the first term takes into account the vector multiplets and N� is the number
of left-handed chiral multiplets in the representation R [75]. The solution to the one
loop RG equations is given by

˛i.MZ/
�1 D ˛�1

G � bi
2�

ln.
MG

MZ
/: (6.10)

For SUSY we have

bSUSY D .�2Nfam � 3

5
N.HuCHd/; 6 � 2Nfam � N.HuCHd/; 9 � 2Nfam/ (6.11)

where N.HuCHd/ is the number of pairs of Higgs doublets. Thus for the MSSM we
have [75]

bMSSM D .�33=5;�1; 3/: (6.12)

The one loop RG equations can be solved analytically for ˛G;MG; and a
prediction for ˛s.MZ/ [see Eq. (5.4)]. Given the experimental values sin2 �W.MZ/ �
0:23 and ˛EM.MZ/

�1 � 128 we find MG � 2:7 � 1016 GeV, ˛�1
G � 24 and the

predicted strong coupling ˛3.MZ/ � 0:12. How well does this agree with the data?
According to the PDG the average value of ˛s.MZ/ D 0:1185 ˙ 0:0006 [47].2 So
at one loop the MSSM is quite good, while non-SUSY GUTs were clearly excluded
(see Fig. 5.1) [29, 51, 72, 75–77].3

Presently, the MSSM is compared to data using 2 loop RG running from the
weak to the GUT scale with one loop threshold corrections included at the weak
scale. These latter corrections have small contributions from integrating out the
W, Z, and top quark. But the major contribution comes from integrating out the

2See problem 6.
3The experimental evidence for gauge coupling unification in SUSY GUTs was first recognized in
1991 [78–81].
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presumed SUSY spectrum. With a “typical” SUSY spectrum4 and assuming no
threshold corrections at the GUT scale, one finds a value for ˛s.MZ/ � 0:127 which
is too large [82]. It is easy to see where this comes from using the approximate
analytic formula

˛�1
i .MZ/ D ˛�1

G � bMSSM
i

2�
ln.

MG

MZ
/C ıi (6.13)

where

ıi D ıhi C ı2i C ıli : (6.14)

The constants ı2i ; ı
l
i ; ı

h
i represent the 2 loop running effects [51, 77], the weak

scale threshold corrections and the GUT scale threshold corrections, respectively.
We have

ı2i � � 1

�

3X
jD1

bMSSM
ij

bMSSM
j

log

"
1 � bMSSM

j

 
3 � 8 sin2 �W
36 sin2 �W � 3

!#
(6.15)

where the matrix bMSSM
ij is given by Einhorn and Jones [51], Marciano and

Senjanovic [77]

bMSSM
ij D

0
@

199
100

27
20

22
5

9
20

25
4
6

11
20

9
4

7
2

1
A : (6.16)

The light thresholds are given by

ıli D 1

�

X
j

bli. j/ log.
mj

MZ
/ (6.17)

where the sum runs over all states at the weak scale including the top, W, Higgs
and the supersymmetric spectrum. Finally the GUT scale threshold correction is
given by

ıhi D � 1

2�

X
�

b�i log.
M�

MG
/: (6.18)

4By a typical SUSY spectrum we mean one determined by CMSSM type GUT scale boundary
conditions with universal scalar masses, universal gaugino masses and a universal A parameter.
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In general the prediction for ˛3.MZ/ is given by

˛�1
3 .MZ/ D .

b3 � b1
b2 � b1

/˛�1
2 .MZ/ � .b3 � b2

b2 � b1
/˛�1
1 .MZ/

C.b3 � b2
b2 � b1

/ı1 � .
b3 � b1
b2 � b1

/ı2 C ı3

D 12

7
˛�1
2 .MZ/� 5

7
˛�1
1 .MZ/C 1

7
.5ı1 � 12ı2 C 7ı3/

� .˛LO3 /
�1 C ıs (6.19)

where bi � bMSSM
i , ˛LO3 .MZ/ is the leading order one-loop result and ıs � 1

7
.5ı1 �

12ı2 C 7ı3/. We find ı2s � �0:82 [83] and ıls D �0:04 C 19
28�

ln. TSUSYMZ
/ where the

first term takes into account the contribution of the W, top and the correction from
switching from the MS to DR RG schemes and (following [84])

TSUSY D m QH.
m QW
mQg
/28=19

�
.
mQl
mQq
/3=19.

mH

m QH
/3=19.

m QW
m QH

/4=19
�
: (6.20)

For a Higgsino mass m QH D 400GeV, a Wino mass m QW D 300GeV, a gluino mass
mQg D 900GeV and all other mass ratios of order one, we find ıls � �0:12. If
we assume ıhs D 0, we find the predicted value of ˛3.MZ/ D 0:135. In order to
obtain a reasonable value of ˛3.MZ/ with only weak scale threshold corrections,
we need ı2s C ıls � 0 corresponding to a value of TSUSY � 5TeV. But this is
very difficult considering the weak dependence TSUSY [Eq. (6.20)] has on squark
and slepton masses. Thus in order to have ıs � 0 we need a GUT scale threshold
correction

ıhs � C0:94: (6.21)

At the GUT scale we have

˛�1
i .MG/ D ˛�1

G C ıhi : (6.22)

Define

Q̨�1
G D 1

7
Œ12˛�1

2 .MG/� 5˛�1
1 .MG/� (6.23)

(or if the GUT scale is defined at the point where ˛1 and ˛2 intersect, then
Q̨G � ˛1.MG/ D ˛2.MG/. Hence, in order to fit the data, we need a GUT threshold
correction

�3 � ˛3.MG/ � Q̨G
Q̨G D � Q̨G ıhs � �4%: (6.24)
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Note, when performing an exact two loop RG analysis of gauge coupling
unification starting with CMSSM boundary conditions at the GUT scale, one obtains
the same result. Once again, in order to fit the low energy values of ˛i.MZ/; i D
1; 2; 3 one needs a value of �3 � �4%.5

6.3 Nucleon Decay

In SUSY SU.5/, gauge bosons contribute to nucleon decay just as in non-SUSY
SU.5/. The main difference is in the value of ˛G and MG. In SUSY GUTs, the GUT
scale is of order 3 � 1016 GeV, as compared to the GUT scale in non-SUSY GUTs
which is of order 1015 GeV. Hence the dimension 6 baryon violating operators are
significantly suppressed in SUSY GUTs [29, 72, 75, 76] with 	p � 1034�38 years.

However, in SUSY GUTs there are additional sources for baryon number
violation—dimension 4 and 5 operators [85, 86]. Although our notation does not
change, when discussing SUSY GUTs all fields are implicitly bosonic superfields
and the operators considered are the so-called F terms which contain two fermionic
components and the rest scalars or products of scalars. Within the context of
SU.5/ the dimension 4 and 5 operators have the form .10 N5 N5/ � . NU ND ND/ C
.Q L ND/ C . NE L L/ and .10 10 10 N5/ � .Q Q Q L/ C . NU NU ND NE/ C B and
L conserving terms, respectively. The dimension 4 operators are renormalizable
with dimensionless couplings; similar to Yukawa couplings. On the other hand, the
dimension 5 operators have a dimensionful coupling of order (1=MG).

The dimension 4 operators violate baryon number or lepton number, respectively,
but not both. The nucleon lifetime is extremely short if both types of dimension
4 operators are present in the low energy theory (see Fig. 6.1). In this case if the
coupling for the baryon number violating operator is � and the lepton number
violating operator is �0, then the product is constrained to satisfy � �0 < 10�27
to be consistent with nucleon decay bounds. However both types can be eliminated
by requiring R parity.

In SU.5/ the Higgs doublets reside in a 5H; N5H and R parity distinguishes
the N5 (quarks and leptons) from N5H (Higgs). R parity [6] (or its cousin, family
reflection symmetry (see [29] and [87, 88]) takes F ! �F; H ! H with
F D f10; N5g; H D fN5H; 5Hg. This forbids the dimension 4 operator .10 N5 N5/,
but allows the Yukawa couplings of the form .10 N5 N5H/ and .10 10 5H/. It also
forbids the dimension 3, lepton number violating, operator .N5 5H/ � .L Hu/

with a coefficient with dimensions of mass which, like the � parameter, could be
of order the weak scale and the dimension 5, baryon number violating, operator
.10 10 10 N5H/ � .Q Q Q Hd/C � � � .

5The code SOFTSUSY defines the GUT scale where ˛1.MG/ D ˛2.MG/. A value of �3 can be
read out and again one finds for the CMSSM, �3 � �4%.
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Fig. 6.1 The effective four fermi operator for proton decay obtained by having both baryon
(coupling �) and lepton (coupling �0) number violating dimension 4 operators

Note, in the MSSM it is possible to retain R parity violating operators at low
energy as long as they violate either baryon number or lepton number only but
not both. Such schemes are natural if one assumes a low energy symmetry, such
as lepton number, baryon number or a baryon parity [89, 90]. However these
symmetries cannot be embedded in a GUT. Thus, in a SUSY GUT, only R parity
can prevent unwanted dimension four operators. Hence, by naturalness arguments,
R parity must be a symmetry in the effective low energy theory of any SUSY GUT.6

Note also, R parity distinguishes Higgs multiplets from ordinary families. In
SU.5/, Higgs and quark/lepton multiplets have identical quantum numbers; while in
E.6/, Higgs and families are unified within the fundamental 27 representation. Only
in SO.10/ are Higgs and ordinary families distinguished by their gauge quantum
numbers. Moreover the Z4 center of SO.10/ distinguishes 10s from 16s and can be
associated with R parity [94].

Dimension 5 baryon number violating operators may be forbidden at tree level
by symmetries in SU.5/, etc. These symmetries are typically broken however
by the VEVs responsible for the color triplet Higgs masses. Consequently these
dimension 5 operators are generically generated via color triplet Higgsino exchange.
Hence, the color triplet partners of Higgs doublets must necessarily obtain mass
of order the GUT scale. The dominant decay modes from dimension 5 operators
are p ! KC N� .n ! K0 N�/. This is due to a simple symmetry argument;

6This does not mean to say that R parity is guaranteed to be satisfied in any GUT. For example the
authors of [91, 92] use constrained matter content to selectively generate safe effective R parity
violating operators in a GUT. For a review on R parity violating interactions, see [93]. In [92], the
authors show how to obtain the effective R parity violating operator Oijk D .N5j � N5k/15 � .10i �˙/15
where ˙ is an SU.5/ adjoint field and the subscripts 15; 15 indicate that the product of fields in
parentheses have been projected into these SU.5/ directions. As a consequence the operator Oijk

is symmetric under interchange of the two N5 states, Oijk D Oikj, and out of 10 N5 N5 only the lepton
number/R parity violating operator QL ND survives.
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Fig. 6.2 The effective four fermi operator for proton decay obtained by integrating out sparticles
at the weak scale

the operators .Qi Qj Qk Ll/; . NUi NUj NDk NEl/ (where i; j; k; l D 1; 2; 3 are
family indices and color and weak indices are implicit) must be invariant under
SU.3/C and SU.2/L. As a result their color and weak doublet indices must be anti-
symmetrized. However since these operators are given by bosonic superfields, they
must be totally symmetric under interchange of all indices. Thus the first operator
vanishes for i D j D k and the second vanishes for i D j. Hence a second or third
generation particle must appear in the final state [87, 88].

The dimension 5 operator contribution to proton decay requires a sparticle loop
at the SUSY scale to reproduce an effective dimension 6 four fermi operator for
proton decay (see Fig. 6.2). The loop factor is of the form

.LF/ / �t �	

16�2

q
�2 C M2

1=2

m216
(6.25)

leading to a decay amplitude

A. p ! KC N�/ / c c

Meff
T

.LF/: (6.26)

In any predictive SUSY GUT, the coefficients c are 3 � 3 matrices related to
(but not identical to) Yukawa matrices. Thus these tend to suppress the proton
decay amplitude. However this is typically not sufficient to be consistent with the
experimental bounds on the proton lifetime. Thus it is also necessary to minimize
the loop factor, (LF). This can be accomplished by taking �;M1=2 small and m16
large. Finally the effective Higgs color triplet mass Meff

T must be MAXIMIZED.
With these caveats, it is possible to obtain rough theoretical bounds on the proton
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lifetime given by [95–99]

	p!KC N� � .
1

3
� 3/ � 1034 years: (6.27)

6.4 Gauge Coupling Unification and Proton Decay

The dimension 5 operator (see Fig. 6.3) is given in terms of the matrices c and an
effective Higgs triplet mass by

1

Meff
T

�
Q
1

2
cqqQ Q cqlL C U cudD U cueE

�
: (6.28)

Note, Meff
T can be much greater than MG without fine-tuning and without having any

particle with mass greater than the GUT scale. Consider a theory with two pairs of
Higgs 5i and N5i with i D 1; 2 at the GUT scale with only 51; N51 coupling to quarks
and leptons. Then we have

1

Meff
T

D .M�1
T /11: (6.29)

If the Higgs color triplet mass matrix is given by

MT D
�
0 MG

MG X

�
(6.30)

then we have

1

Meff
T

� X

M2
G

: (6.31)

Thus for X << MG we obtain Meff
T >> MG. Note, however, the color triplets have

mass of order MG, yet proton decay is still suppressed.
We assume that the Higgs doublet mass matrix, on the other hand, is of the form

MD D
�
0 0

0 X

�
(6.32)

Fig. 6.3 The effective
dimension 5 operator for
proton decay

T TX

Q

Q

Q

L
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with two light Higgs doublets. Note this mechanism is natural in S0.10/ [73, 74,
100] with a superpotential of the form

W � 10 45 100 C X .100/2 (6.33)

with only ten coupling to quarks and leptons, X is a gauge singlet and h45i D
.B � L/ MG.

So we can suppress nucleon decay rates, however, we shall now show that this
is at the expense of adversely affecting gauge coupling unification. Recall �3 �
.˛3.MG/�Q̨G/

Q̨G � �4%. At one loop we find

�3 D �
Higgs
3 C �

GUT breaking
3 C � � � : (6.34)

Moreover [95]

�
Higgs
3 D 3˛G

5�
ln.

Meff
T

MG
/: (6.35)

See Table 6.1 for the contribution to �3 in Minimal SUSY SU.5/, and in an SU.5/
and SO.10/ model with natural Higgs doublet-triplet splitting.

Recent Super-Kamiokande bounds on the proton lifetime severely constrain these
dimension 6 and 5 operators with 	. p!eC�0/ > 1:2 � 1034 years and 	. p!KC N�/ >
3:9�1033 years (205.7 ktyr) at (90% CL) based on the listed exposures [101]. These
constraints are now sufficient to rule out minimal SUSY SU.5/ [102, 103]. The
upper bound on the proton lifetime from these theories (particularly from dimension
5 operators) is approximately a factor of 5 above the experimental bounds. These
theories are also being pushed to their theoretical limits. Hence if four dimensional
SUSY GUTs are correct, the observation of nucleon decay may be within reach.
Two new detectors, DUNE in the U.S. and Hyper-Kamiokande in Japan, are being
proposed to search for nucleon decay with a sensitivity to lifetimes of order 1035

years after 10 years of running. The discovery of nucleon decay would be a huge
success for grand unified theories.

Table 6.1 Contribution to
�3 in three different GUT
models

Minimal SU5 Minimal

Model SU5 “Natural” D/T [97] SO10 [98, 99]

�
GUT breaking
3 0 �7:7% �10%

�
Higgs
3 �4% C3:7% C6%

Meff
T ŒGeV� 2� 1014 3� 1018 6� 1019



Chapter 7
SUSY Flavor Problem

Up until now we have discussed the MSSM and SUSY GUTs which define the
boundary conditions for the renormalization group equations at the GUT scale. The
direct consequence of 4D SUSY GUTs is gauge coupling unification which requires
low energy SUSY breaking and a concomitant solution to the gauge hierarchy
problem. In addition observations made at the LHC will provide direct information
about those GUT boundary conditions, due to the assumed SUSY desert between
MZ and MG. Finally nucleon decay is predicted at a rate which may be observable
at future proton decay experiments, such as Hyper-Kamiokande in Japan or DUNE
in the U.S.

But SUSY GUTs provide a framework for much more. In particular, it can
minimize the number of fundamental parameters in the theory. It already relates
quarks and leptons by placing them in irreducible representations of the GUT group.
Thus relating quark and lepton masses. If we now introduce family symmetries we
can, in principle, reduce the number of fundamental parameters even further. This
will have the effect of correlating much low energy data and thus provide non-trivial
tests of the theory.

Before we discuss the general issue of flavor problems in the MSSM, let’s
consider the well-studied scenario known as minimal flavor violation [MFV]. In
this scenario [defined at the GUT scale] we take the GUT boundary conditions for
the soft SUSY breaking parameters to be those given in Eqs. (4.16) and (4.17).
Given these boundary conditions defined at the GUT scale, one can readily see
that the only flavor violation entering into the low energy theory must necessarily
be proportional to the CKM matrix. According to Eq. (2.26) the fermion Yukawa
matrices are diagonalized via the following redefinitions of the fermion fields:

u0 � Uq u; Nu0 � Nu U�

Nu d0 � Ud d; Nd0 � Nd U�

Nd (7.1)

e0 � Ul e; Ne0 � Ne U�

Ne �0 � Ul �; N�0 � N� U�

N�

and the CKM matrix, VCKM D U�
q Ud, while neutrinos are in the flavor basis.

© Springer International Publishing AG 2017
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Note these redefinitions of the fermion fields were defined in the SM. Now for
the MSSM we shall define what is called the SUSY flavor basis, i.e. we rotate
superfields by the same transformations as the fermions. In this SUSY flavor
basis, soft SUSY breaking matrices are typically not diagonal, except in case of
minimal flavor violation. Clearly the terms in the superpotential, Eq. (3.13), are
diagonalized by the transformations of Eq. (7.1). Now consider the soft SUSY
breaking Lagrangian, Eq. (4.15). Since in the MFV basis, all soft scalar masses are
proportional to the identity matrix at the GUT scale, they remain proportional to the
identity matrix after the change of basis. In addition the A terms in the MFV basis
are proportional to Yukawa matrices so they are also diagonalized. Hence the only
non-diagonal terms in the SUSY Lagrangian at the GUT scale are in the couplings
of the W˙ gauge sector to quarks and the non-diagonalization of the PMNS matrix.
The latter is negligible and the former is proportional to VCKM. Thus we have shown
that flavor violation is minimized with MFV boundary conditions at the GUT scale.
Of course, once we use the RG equations below the GUT scale, scalar masses and A
terms are no longer diagonal. They contribute new flavor violating processes at the
weak scale.

Let us now consider limits on flavor violation coming from low energy data.
We shall see that the fundamental theory must necessarily be close to the MFV
limit. Once we have motivated MFV phenomenologically, we will then consider
soft SUSY breaking mechanisms which can lead to MFV. Consider generic soft
terms, for example in the electron–muon system,

� Lsoft � .Qe� Q��/
�
m211 m

2
12

m221 m
2
22

� � Qe
Q�
�
: (7.2)

Define Nm2 D m211Cm222
2

and ıLLe� D m212
Nm2 and assume ıLLe� 
 1. Using the approximation

of small ıLLe� one can calculate the process � ! e � (Fig. 7.1) and one obtains the
following bound [104]

jıLLe�j � 4:4 � 10�4 .
Qm

1TeV
/2 .

50

tanˇ
/ .

BR.� ! e �/

5:7 � 10�13 /
1=2 (7.3)

Fig. 7.1 The slepton-neutralino loop contributing to the branching ratio, BR.� ! e �/
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Table 7.1 Experimental bounds on charged lepton flavor violating processes

Branching ratio Experimental bound Experiment References

BR(� ! e�) 5:7� 10�13 MEG [105]

BR(�C ! eC eC e�) 1:0� 10�12 SUNDRUM [106]

BR(�� Au ! e� Au) 7:0� 10�13 SUNDRUM II [107]

BR(	 ! ��) 4:5� 10�8 Belle [108]

Table 7.2 Future expected sensitivities on charged lepton flavor violating processes

Branching ratio Experimental bound Experiment

BR(� ! e�) < 6� 10�14 MEG [109]

BR(�C ! eC eC e�) � 10�16 Mu3e [110]

BR(�� N ! e� N) 6:0� 10�17 Mu2e, COMET

Table 7.3 Experimental bounds on charged lepton electric dipole moments

Electric dipole moments Experimental bound References

de < 8:7 � 10�29 ecm [111]

d� D �0:1˙ 0:9 � 10�19 ecm [47]

Fig. 7.2 K0 � NK0 mixing via gluino exchange

using the present MEG bound on the branching ratio, BR.� ! e �/ < 5:7 � 10�13
at 90% CL [105].

The experimental bounds on lepton flavor violating processes are quite severe.
We have some experimental bounds in Table 7.1. In the future, the sensitivities are
expected to be even better with some examples in Table 7.2. There are also stringent
limits on electric dipole moments of charged leptons, Table 7.3.

Flavor violation in the quark sector is also very restricted, especially for the first
two families. The strongest bound comes from K0� NK0 mixing and the CP violating
parameter, �K , (see Fig. 7.2).



56 7 SUSY Flavor Problem

We have the bounds,

�mK )
q

jReıLLds j2 � 0:04 .0:08/

 mQq
1TeV

�
(7.4)

�K )
q

jImıLLds j2 � 3:0 .6:4/ � 10�3 
 mQq
1TeV

�
(7.5)

for
m2

Qg

m2
Qq

D 0:3 .1:0/ [104].

Let us consider some possible solutions to the general SUSY flavor and CP
problems. The problem is that squark and slepton mass matrices are, in general,
not diagonal in the SUSY flavor basis, i.e. in the same basis that quark and lepton
mass matrices are diagonal. For example, consider for just the first two families of
quarks, in the quark mass basis,

mQ D
�
md 0

0 ms

�
(7.6)

m2QQ D
�
cL �sL
sL cL

� �
m21 0

0 m22

� �
cL sL

�sL cL

�

where the matrices containing cL D cos �L; sL D sin �L are the additional matrices
needed to diagonalize the squark mass squared matrix. Multiplying the matrices we
have

m2QQ D .m21 C m22/

2

�
1 0

0 1

�
C .m21 � m22/

2

�
cos 2�L sin 2�L
sin 2�L � cos 2�L

�
: (7.7)

Thus the constrained parameter, ıLLds , is given by

ıLLds D
.m21�m22/

2
sin 2�L

Nm2 
 1 (7.8)

where Nm2 D .m21Cm22/
2

. Note, that the same problem exists for ıRR and ıLR, since they
all appear in the scalar mass squared matrix.

There are, in general, three possible solutions for the appropriate ı 
 1. They
are

1. Universal scalar masses for states with the same SM charge. In the simple
example, m21 D m22 D m20 and also Aij D A012�2;

2. sin 2�L 
 1, which corresponds to aligning the scalar mass matrix with the
fermion mass matrix, and

3. Nm2  TeV2 for the first two families of scalars, since the most stringent
constraints affect the first two families. This is known as decoupling.
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7.1 SUSY Breaking Mechanisms

So what SUSY breaking mechanisms satisfy one or more of these constraints?
Earlier we discussed Minimal Flavor Violation as satisfied by the GUT boundary
conditions of the CMSSM in Eqs. (4.16) and (4.17). This is an example of solution
1 (universal scalar masses).

Solution 2 (alignment) can be obtained by invoking non-abelian flavor symme-
tries. When the flavor symmetries between different families are exact then the
scalar masses are universal, i.e. proportional to the unit matrix. Then the fermion
mass matrices are only generated when the family symmetries are spontaneously
broken. In the process, generating the hierarchy of fermion masses. In addition, the
off diagonal elements of the scalar mass squared matrices are also only generated
when the family symmetries are spontaneously broken. In this case the scalar mass
squared matrices are aligned with their fermionic partners.

Finally splitting the third family masses from the first two would be permitted if
the family symmetry was SU.2/ (or a discrete subgroup) where the first two families
are in a doublet and the third family and the Higgses are in a singlet under the family
symmetry. Then the universal first two family scalar masses can be made much
larger than the third family scalars (hence the first two family scalars decouple).

But do we know of any natural SUSY breaking mechanism which gives any
of the solutions? In Sect. 4.1 we mentioned the two SUSY breaking transmission
mechanisms available in four space-time dimensional SUSY theories, i.e. gauge-
mediated, gravity-mediated SUSY breaking and the SUSY breaking mechanism,
gaugino condensates. In all cases, SUSY breaking occurs in a hidden sector of the
theory and then is transmitted to the visible sector via flavor blind gauge interactions
(see Fig. 7.3).

Fig. 7.3 Gauge- (or Gravity-) mediated SUSY breaking has a hidden sector where SUSY
breaking occurs, a visible sector which is the MSSM and the mediator which is the Standard
Model gauge bosons (or Gravity)
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Gauge Mediated SUSY Breaking

Gauge mediated SUSY breaking requires a SUSY breaking sector which sponta-
neously generates F-term SUSY breaking. Consider, for example, a superfield X
which obtains a VEV given by

hX.x�; �˛/i D X C .�/2 FX: (7.9)

The field X does not couple directly to the visible sector (quarks, leptons and gauge
bosons). Instead it couples to messenger fields, M, which have Standard Model
gauge quantum numbers. Let’s take two superfields, M; NM 	 5; N5 of SU.5/ and
add a term to the superpotential of the form W � � X NM M plus the terms necessary
to give X the appropriate VEV. Then gauginos obtain a SUSY breaking mass via the
one loop corrections, Fig. 7.4. The gauginos obtain mass given by

Mi � ˛i

4�
�eff ; with �eff D FX

X
: (7.10)

Scalars obtain mass at two loops via the Feynman diagram, Fig. 7.5. We find

Qm2˛ D 2

3X
iD1

Ci
˛.
˛i

4�
�eff /

2 (7.11)

where Ci
˛ are the quadratic Casimirs for scalars in the representation ˛ under the

SM gauge group, i.e. C3color triplet D 4=3; C2weak doublet D 3=4; C1Y=2 D 3
5
.Y=2/2.

Note, SUSY is spontaneously broken at the scale
p
FX . However, the effective

SUSY breaking scale, in the SM sector [Eq. (7.10)], is suppressed by the messenger
scale, X. Keeping FX fixed and increasing X we see that SUSY breaking decouples
from the SM sector [23, 112], since it must necessarily be transmitted to the visible
sector by heavy messengers.

Fig. 7.4 The messenger
fields enter the loop to give
mass to gauginos at the
messenger scale, mM D � X
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Fig. 7.5 The messenger fields enter the loop to give mass to scalars at two loops

Gravity Mediated SUSY Breaking

In gravity mediated SUSY breaking, the mediator is gravity itself. In supergravity
[SUGRA] models with a flat Kähler potential the gravitino mass is given by

m3=2 � FXp
3 mPl

: (7.12)

wheremPl is the reduced Planck scale, i.e. mPl D MPl=
p
8� . As we see in Eq. (7.12),

the gravitino mass, and then all SUSY breaking parameters in the visible sector, are
suppressed by mPl. Thus, again, keeping FX fixed and taking mPl to infinity, soft
SUSY breaking effects decouple.

The simplest SUGRA model is known as the Polonyi model [113, 114]. In this
model the superpotential is given by

W D m mPl.X C ˇ/C WMSSM.˚i/ (7.13)

[where WMSSM is the superpotential for the MSSM given in Eq. (3.13)], a flat Kähler
potential

K D X� X C KMSSM (7.14)

[where KMSSM is given in Eq. (3.12)] and the gauge kinetic function, f .˚/, given
in Eq. (3.18) is taken to be f .X/ D X= OM where OM � mPl. Minimizing the scalar
potential with respect to the scalar field, X, and requiring zero cosmological constant
one finds

X D .
p
3� 1/ mPl (7.15)
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with ˇ fine-tuned to take the value ˇ D .˙2 � p
3/ mPl. Supersymmetry is

spontaneously broken since FX D m mPl ¤ 0 and the gravitino obtains mass
m3=2 D m e.2�

p
3/.

In the limit mPl ! 1 with m3=2 fixed, we find the scalar potential for MSSM
fields, f˚ig, given by [see Eq. (4.11)]

V.hXi; ˚i/ D e.jhXij2=m2Pl/
"X

i

j@W
@�i

j2 C m23=2
X
i

j�ij2

Cm3=2

 X
i

�i
@W

@�i
C .A � 3/W C h:c:

!#
(7.16)

with A D 3� p
3 [115, 116]. In this simplest of scenarios with flat Kähler potential

and minimal Polonyi superpotential, scalars obtain a universal scalar mass, m3=2, a
universal A term, A0 D A m3=2, a universal B term, B D .A � 1/ m3=2 and universal
gaugino masses, M1=2 D FX=mPl � m3=2.

Unfortunately, none of this is guaranteed by any symmetry of the theory. In
principle, one could add terms to the Kähler potential of the form

K � X� X

m2Pl
�ij ˚

�
i e�2 g V ˚j (7.17)

which couples the Polonyi field, X, to the matter fields, ˚i, and where �ij is an
arbitrary block diagonal matrix coupling fields with the same SM charges. As a
consequence scalar masses would obtain non-universal corrections,

� Qm2ij / �ij m
2
3=2: (7.18)

Similarly if one coupled the Polonyi field directly to matter fields in the super-
potential then A terms can also obtain non-universal corrections. These could be
disastrous phenomenologically. Finally, gaugino masses may not be universal if the
gauge kinetic term was of the form

Lgauge�kinetic D Œ
1

8g2s

Z
d2�Tr.

X

M3

Wg
˛ Wg˛/C h:c:� (7.19)

CŒ 1
8g2

Z
d2�Tr.

X

M2

WW
˛ WW˛/C h:c:�

CŒ 1

16g02

Z
d2�.

X

M1

Wb
˛ Wb˛/C h:c:�

with Mi; i D 1; 2; 3 all different. Of course, if the theory had an SU.5/ symmetry,
then symmetry arguments would require M3 D M2 D M1 � M at MG. However,
there is, in general, no symmetry in the scalar sector, UNLESS we introduce
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non-abelian flavor symmetries (sometimes called family or horizontal symmetries)
which relate matter fields with the same SM charges. Only then can we have the
possibility of guaranteeing universal scalar masses, at least until those same family
symmetries are broken. But why do they have to be broken you ask? Because
the same family symmetries would constrain the fermion mass matrices. We will
discuss this in more detail later in the course when we discuss particular SUSY
GUT models.

� Problem

We can now discuss the � problem, i.e. why is � 
 MGUT or MPl. We first require
that the � term vanishes at tree level in the SUSY Lagrangian. Then one possible
way of generating the � term is via the Giudice-Masiero mechanism [117]. In this
case we add a term to the Kähler potential of the form

�K D X�

MPl
Hu Hd: (7.20)

Thus when FX gets a SUSY breaking VEV we obtain � D FX
MPl

� m3=2. We can also
add terms to the super potential of the form

�W D ˚2

MPl
Hu Hd: (7.21)

If ˚ obtains a non-zero SUSY conserving VEV of the form h˚i D M, then the
low energy theory will contain a � term given by � D M2=MPl. Note, this theory
typically has a globalU.1/ symmetry. When˚ obtains a non-zero VEV a Goldstone
boson is created, i.e. the axion which may solve the strong CP problem. With M �
1010 GeV we find � � 100GeV. This is the Kim-Nilles mechanism [118].

Dynamical SUSY Breaking in Supergravity

It was shown in [28] that gaugino condensation can result in dynamical SUSY
breaking. The pure supergravity Lagrangian is given by

LSG D �1
6
e f .Qs; Qs�/ ŒR.e; !.e;  // � 1

2
���� N � �5�� D.!.e;  //  �

�1
3
euu� C 1

3
eAmA

m� (7.22)
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where e is the determinant of the vierbein, ! is the Lorentz gauge function,  � is
the gravitino field and u; Am are gravity auxiliary fields. Using the supergravity
formalism in [28, 119] one has the supergravity Lagrangian coupling a chiral
superfield S to the non-abelian gauge field V via

L D
Z

d4xd4� E .f .S; S�/C Re
1

R
W C Re

1

R
f .S/W ˛W˛/ (7.23)

where f .S; S�/ D �3m2Ple�K =3m2Pl , f .S/ is the gauge kinetic function, E is
the superspace determinant and R is the chiral scalar curvature superfield [120].
For canonical Kähler potential and assuming, due to strong gauge interactions, a
gaugino condensate

h�˛ �˛i � �3 (7.24)

forms, then SUSY is spontaneously broken. Moreover

FS D 1

4
f 0.S/h�˛ �˛i (7.25)

giving a gravitino mass

m3=2 D �3

4
p
3 m2Pl

: (7.26)

Summary

We conclude this discussion of SUSY flavor and CP problems with a brief
summary. Experimental evidence shows that the fermion and scalar mass matrices
are necessarily almost diagonal in the SUSY flavor basis. Off-diagonal elements in
the scalar mass matrices must be small. This is particularly true for the first two
families from processes such as � ! e � , K0 � NK0 mixing or KL ! � Ne. The
imaginary part of the diagonal elements are also constrained by the electric dipole
moments of the electron and neutron and the imaginary part of the off-diagonal
element is constrained by CP violation in the K system, i.e. �K . Thus SUSY breaking
mechanisms which naturally provide minimal flavor violation are necessary. We
discussed gauge-mediated SUSY breaking which satisfies this criteria. Gravity-
mediated SUSY breaking, on the other hand, can only satisfy this criteria with the
additional imposition of flavor symmetries.



Chapter 8
SUSY GUTs and the CP and Flavor Problem

In Sect. 6.4 we discussed two experimental consequences of SUSY GUTs, i.e. gauge
coupling unification and proton decay. It might be expected that since the GUT
scale is so high, these might be the only observable consequences at low energies.
The latter simply because the effective low energy theory conserves baryon number
and only weakly violates lepton number. In this section we argue that radiative
corrections at the GUT scale can also affect low energy flavor physics. The reason is
that these radiative corrections can induce flavor violation in scalar masses and then
these scalar masses enter quantum loops at the weak scale (see [121] and [122]).

Consider extending the MSSM by terms in the superpotential of the form [121]

W D Fi �ij Fj X C Fi �i Y Z (8.1)

where Fi is one member of the set Fi D fQi; NUi; NDi; Li; NEi; NNig and X; Y; Z
are superfields with the correct gauge quantum numbers to couple to quarks and
leptons. These terms in the superpotential induce radiative corrections to squark or
slepton masses (via the one loop graphs of Fig. 8.1) of the form

�m2QFij / .�
�
ik �kj C �

�
i �j/ log.

MPl

M.X; Y; Z/
/: (8.2)

These corrections to the scalar mass squared matrices can, in principle, violate flavor
symmetries in the low energy theory. Hence SUSY theories are sensitive to physics
at high energies! In the next sections we consider two well studied cases.

© Springer International Publishing AG 2017
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Fig. 8.1 One loop corrections to scalar quark or lepton masses

8.1 Radiative Corrections Due to Physics Above the GUT
Scale

Once SUSY is broken we obtain soft breaking terms which can affect flavor
violation. These are, in particular, the mass squared terms of the form Qf � m2f Qf or

A terms of the form Qf Af Qf h where the scalar fields Qf and h are any one in the set
Qf D fQq; QNu; QNd; Ql; QNe; QN�g and h D fhu; hdg in gauge invariant combinations [see
Eq. (4.15)]. In Eqs. (4.16) and (4.17) we chose minimal flavor violating boundary
conditions at the GUT scale given by

• scalar mass—

m2f jMG D m20 13�3I (8.3)

• A parameter—

Aij
f D A0 Y

ij
f : (8.4)

However if we have gravity mediated SUSY breaking then the MFV boundary
conditions are properly imposed at the fundamental scale mPl � 2:4 � 1018 GeV
and not MG � 2� 1016 GeV. In gauge mediated SUSY breaking, on the other hand,
the boundary conditions are determined at the messenger scale which may be below
the GUT scale. We now show that additional flavor violating effects are induced in
gravity mediated SUSY breaking due to radiative corrections above the GUT scale.

Consider supergravity with MFV boundary conditions imposed at the Planck
scale

• scalar mass—

m2f jMPl D m20 13�3I (8.5)
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• A parameter—

Aij
f D A0 Y

ij
f : (8.6)

In SU.5/, the superpotential has terms of the form in Eq. (6.4). At the GUT scale
we split the Higgs doublets and triplets such that below the GUT scale we only have
the states in the MSSM, i.e. the Higgs triplets obtain mass at the GUT scale. The
superpotential above the GUT scale contains not only the interactions of the Higgs
doublets,

W � .Yu/
ij NUi Qj Hu C .Yd/

ij . NDj Qi C NEi L
0
j/ H

0
d C .Y�/

ij NNi Hu L
0
j � 1

2
Mij NNi NNj:

(8.7)

[see Eq. (5.46)], but also the interactions of the Higgs triplets, T; NT,

W � .Yu/
ij . NUi NEj CQi Qj/ T C .Yd/

ij NT . NUi NDj CQi L
0
j/C .Y�/

ij NNi T NDj: (8.8)

These terms will induce flavor violation in both the quark and lepton sectors. The
analysis is typically performed in the SUSY flavor basis [121] where the up quark
Yukawa matrix is diagonalized via unitary rotations on up quark superfields. In this
basis neither the down quark nor the lepton Yukawa matrices are diagonal.

For example, in SU.5/ if we renormalize the slepton masses from MPl to MG,
taking into account the large top quark Yukawa coupling in the loop (left, Fig. 8.2)
we obtain flavor violating mass squared terms due to the interaction

W � NU .YD
u VCKM/ NE T: (8.9)

Fig. 8.2 One loop correction to slepton mass due to RG running from MPl to MG. In the case
of SU.5/ only the contribution on the left is significant and proportional to the top quark Yukawa
coupling. However, for SO.10/ with Yukawa unification, both terms are important
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It is of the form

�m2Ne ij D �V�CKMi3 VCKM3j I (8.10)

with I D 3
8�2

R MPl

MG
Y233 .m

2NuC2m2T CA233/d.ln�/. This is an approximation assuming
that Y33 � Yt; A33 � At are dominated by the top quark Yukawa coupling [123,
124]. Note, flavor violating effects are induced in the lepton sector due to the mixing
of quarks and leptons above the GUT scale. A similar flavor violating contribution is
induced in the leptonic matrix, Ae. For SO.10/with Yukawa unification, both graphs
in Fig. 8.2 give large contributions to �m2QNeij and �m2Qe ij. A detailed analysis of these

flavor violating effects to processes like � ! e � , � N ! e N, 	 ! � � for both
SU.5/ and SO.10/ were carried out in [124] assuming the minimal theory above
MG. The resulting contribution to (for example) � ! e � is largest for SO.10/ and
scales as Qm�4 � Qm2

Qm2 and decreases with Yt. From Fig. 12, [124] one concludes that
with scalar masses of order 3 TeV, � � TeV and tanˇ � 50, the branching ratio for
� ! e � is most likely below the present experimental bounds. On the other hand,
this analysis assumed a minimal theory above MG. However given the hierarchy of
fermion masses and possible Froggatt-Nielsen [125] mechanism for this hierarchy,
it is not at all clear that these flavor violating effects are consistent with the data. In
fact they typically induce much larger flavor violating effects. As far as I am aware,
a detailed analysis of such theories has not been performed.

In addition to flavor violating effects, CP violating effects from physics above
the GUT scale are also induced. See for example [124, 126]. They find [124]

jdej
10�27 ecm

D 0:74 sin�

r
BR.� ! e �/

5:7 � 10�13 (8.11)

where � is the CP violating phase and the present experimental bounds [47] are
BR.� ! e �/ < 5:7 � 10�13 and de < 10:5 � 10�28 ecm. Again, the results are
likely consistent with the data.

8.2 Radiative Corrections Due to Right-Handed Neutrinos

We know that neutrinos have mass and, within the context of GUTs, the most
natural scenario is the See-Saw mechanism. With right-handed neutrino Majorana
masses of order 1012˙2 GeV, we obtain light active neutrinos with Majorana masses
consistent with oscillation data. SO.10/ and PS GUTs are more constrained than
SU.5/ because in SO.10/ and PS, Dirac neutrino masses are related to up quark
masses by the symmetry. The superpotential below MG and above the right-handed
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neutrino masses contains the term [Eq. (6.4)]

W � .Y�/ij NNi Hu L0
j � 1

2
Mij NNi NNj (8.12)

D NNT Y� Hu L0 � 1
2

NNT M NN:

The heavy right-handed neutrinos, NNi, can be integrated out of the theory in a
supersymmetric way by solving the equations,

@W

@ NNi
D .Y�/

ij Hu L
0
j � Mij NNj D 0 (8.13)

and plugging the solution for NNi back into the superpotential.1 We find

NN D M�1 Y� Hu L
0 (8.14)

and thus we obtain the supersymmetric version of the Weinberg operator,

W � 1

2
.Hu L

0/T YT
� M�1 Y� .Hu L

0/: (8.15)

When electroweak symmetry is broken and hHui D
�
0

vu

�
we find the Majorana

neutrino mass term for the light active neutrinos given by

� L� D 1

2
�T mT

� M
�1 m� � (8.16)

with m� D Y� vu. In the neutrino flavor basis we then obtain the result in Eq. (2.29).
If we include the right-handed neutrinos in the renormalization group equations

from MG (or MPl) to MN we obtain radiative corrections to slepton mass squared
matrices given by Borzumati and Masiero [122], Gabbiani and Masiero [127],
Calibbi et al. [128]

.�m2Qe/ij D �3m
2
0 C A20
16�2

X
k

Y�ik Y
�
�kj ln.

M2
G

M2
Nk

/: (8.17)

These induce lepton flavor violating interactions in the low energy theory (Fig. 8.3).

1This determines an approximate solution to diagonalizing the neutrino mass matrix.
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Fig. 8.3 One loop correction
to slepton mass due to RG
running from MG to MMN

8.3 Summary

Calibbi et al. [128] studies the contribution to lepton flavor violating processes
from both physics above the GUT scale and above the Majorana neutrino mass
scale. They compare the reach of LFV experimental searches to the LHC reach
for supersymmetric particles. They have considered an SO.10/ SUSY GUT with
SO.10/ breaking to SU.5/ at a scale MX D 5 � 1017 GeV which then breaks to the
SM at the GUT scale MG D 2 � 1016 GeV.

For neutrino oscillations they make the following two assumptions for the origin
of the large UPMNS mixing angles. In the first case they assume Y� D Yu (called the
CKM case with small mixing angles) and in the second case Y� D UPMNS.MR3/ Ydiag

u
(called the PMNS case with large mixing angles). Regions of soft SUSY breaking
parameter space with light gauginos and scalars are essentially excluded by the
present bounds on lepton flavor violation. Even with heavier gauginos and scalars,
the second case with large mixing angles is very much constrained. Only the
case with small mixing angles has large regions of soft SUSY breaking parameter
space (with heavy super partners) which survive. Note, the case with small mixing
angles is actually consistent with SO.10/ which relates up quark and Dirac neutrino
Yukawa couplings.

In [129] the authors compare constraints on GUT physics from both lepton flavor
violating reactions and quark flavor violating reactions due to radiative corrections
at the GUT scale (above and/or below). Renormalization group running below the
Planck scale induces flavor violation in the quark sector due to the term

.Yd/
ij NT . NUi NDj/ (8.18)



8.3 Summary 69

[Eq. (8.8)] in the superpotential. In SO.10/, these terms can be significant and they
are severely constrained by quark flavor violating processes, such as K0 � NK0,
b ! s � , etc. In this paper the constraints on Yukawa couplings due to GUT relations
is used to obtain correlations between constraints on flavor violation between the
quark and lepton sectors. For example, leptonic constraints on 	 ! � C � places
stringent constraints on the mixing �MBs . Clearly these cross correlations will
severely constrain any SUSY GUT theory.



Chapter 9
Fermion Masses and Mixing in SUSY GUTs:
Predictive Theories

In this section we discuss the construction of complete SU.5/ and SO.10/ SUSY
GUTs. When constructing such a theory one has two goals in mind. In the first
place one must choose representations for the new GUT multiplets entering the
theory at the GUT scale which are necessary for GUT symmetry breaking and Higgs
doublet-triplet splitting. These affect gauge coupling unification and nucleon decay
rates. One must also obtain Yukawa couplings which are consistent with low energy
physics. In the best case scenario one finds a predictive theory for fermion masses
and mixing angles which has fewer parameters at the GUT scale than the Standard
Model.

When choosing the new states at the GUT scale one may include large repre-
sentations of the GUT group, as long as the effective low energy theory below the
GUT scale only includes the states and interactions of the MSSM.1 It is a common
approach for both SU.5/ and SO.10/ models for the Standard Model Higgs bosons
to be contained in higher dimensional Higgs representations including for SU.5/
the 45 [55] or for SO.10/ the 126 and/or 120 [70, 94, 130–132]. Of course, large
dimensional representations offer new problems. Gauge couplings above the GUT
scale quickly become non-perturbative and it is non-trivial to obtain a GUT breaking
sector which satisfies the requirement that the effective theory below the GUT scale
is the MSSM.

It is important to note that grand unification alone is not sufficient to obtain pre-
dictive theories of fermion masses and mixing angles. Other ingredients are needed.
In one approach additional global family symmetries are introduced (non-abelian
family symmetries can significantly reduce the number of arbitrary parameters in

1In some cases one may want to include additional low energy states or gauge interactions, but I
will not discuss these cases here. For example, the non-minimal supersymmetric standard model
[NMSSM] includes an extra SM singlet which might be useful for ameliorating the small hierarchy
problem. Also, with the addition of vector-like families it could be made consistent with the recent
observed diphoton bump at 750 GeV by ATLAS and CMS.
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Table 9.1 Patterns of masses
and mixing

�t D �b D �	 D ��	 SO.10/@MG

�s 	 1
3
��; �d 	 3�e @MG [55, 60, 61]

ms � 4 � 1
3
m�; md � 4 � 3me @MZ

�d�s�b � �e���	 SU.5/@MG

Det.md/ � Det.me/ @MG

Vus � .
p
md=ms � i

p
mu=mc/ [133–136]

Vub=Vcb � p
mu=mc [137]

Vcb 	 ms=mb 	 p
mc=mt [60, 61]

the Yukawa matrices). These family symmetries constrain the set of effective higher
dimensional fermion mass operators. Moreover, sequential breaking of the family
symmetry is correlated with the hierarchy of fermion masses. In addition, some
simple patterns of fermion masses (see Table 9.1) must be incorporated into any
successful model.

Three-family models exist which roughly fit all the data, including neutrino
masses and mixing [95–97, 99, 138–147]. We shall only consider two specific
examples here, a complete SU.5/ example found in [97] and an SO.10/ example
in [99, 148].

9.1 Complete SU.5/ SUSY GUT: GUT Breaking
and Doublet-Triplet Splitting

Consider first the complete SU.5/ SUSY GUT [97]. The symmetry of the model
is SUSY SU.5/ ˝ U.1/. Define Q as the charge associated with U.1/. The
superpotential of the model has three parts:

W D W1 C W2 C W3 : (9.1)

The W1 term only contains the field Y in the 75 representation of SU.5/ with
Q D 0:

W1 D c1 Y
3 C MY Y2 : (9.2)

The effect of W1 is to provide Y with a VEV of order MY=c1 � MY � MGUT and to
give a mass to all physical components of Y, i.e. those that are not absorbed by the
Higgs mechanism (the 75 uniquely breaks SU.5/ down to SU.3/˝SU.2/˝U.1/).

The W2 term induces doublet-triplet splitting:

W2 D c2 H Y H50 C c3 NH Y H50 C c4 H50 H50 X : (9.3)
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Fig. 9.1 The 75 and 50
dimensional fields in SU.5/
are defined in terms of the
Young Tableaux

Table 9.2 States and their
quantum numbers under
SU.5/ and Q

Field Y H NH H50 H50 X

SU.5/ 75 5 N5 50 N50 1
Q 0 �2 1 2 �1 �1

H and NH are the 5 and N5 of Higgs fields. Without loss of generality the constants, c2,
c3 and c4, real and positive. For a definition of the 75 and 50 dimensional fields in
SU.5/ see the Young Tableaux, Fig. 9.1. The renormalizable couplings that appear
in W2 are the most general allowed by the SU.5/ and the Q assignments of the fields
in Eq. (9.3) which are given as follows (Table 9.2).

At the minimum of the potential, in the limit of unbroken SUSY, the VEVs of the
fields H, NH, H50 and H50 all vanish, while the X VEV remains undetermined. When
SUSY is softly broken the light doublets in H and NH acquire a small VEV, while the
X VEV is fixed near the cut-off �, a scale taken to be between MGUT and MPl. At
the scale � around 10–20 MGUT the theory becomes strongly interacting. Note, �
is large enough that the approximation of neglecting terms of order MGUT=� is not
unreasonable.

The missing partner mechanism to solve the doublet-triplet splitting problem
occurs because the 50 contains a .N3; 1/, i.e. a colored anti-triplet and SU.2/ singlet
with electric charge 1/3, but no colorless Higgs-like doublet (1,2). The U.1/ flavor
symmetry prevents a � term, H NH. Also no non-renormalizable terms of the form
H NHYmXn .m; n � 0/ are possible, because X has a negative Q charge. Thus in
this theory doublet-triplet splitting occurs naturally due to the absence of a Higgs
doublet partner in the 50; 50. This is the so-called missing partner mechanism [73].
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The Higgs color triplets mix with the analogous states in the 50 and the resulting
mass matrix is of the see-saw form:

OmT D
�

0 c2hYi
c3hYi c4hXi

�
: (9.4)

Defining m� D c4hXi the eigenvalues of the matrix OmT Om�T are the squares of:

mT1;2 D 1

2

hq
m2� C .c2 C c3/2hYi2 ˙

q
m2� C .c2 � c3/2hYi2

i
: (9.5)

The effective mass that enters in the dimension 5 baryon and lepton number
violating operators is given by

meff
T D mT1mT2

m�
D c2c3

c4

hYi2
hXi : (9.6)

We discussed nucleon decay in this model earlier (see Table 6.1). It turns out that
in order to fit the observed value of ˛3.MZ/, the effective color triplet mass in this
model is given by meff

T � 3 � 1018 GeV (see Fig. 9.2, taken from [97]). This is
then also preferred by the bound on the proton lifetime via p ! KC N�. By keeping
fixed all the remaining parameters they obtain a proton decay rate via dimension 5
operators in the range 8 � 1031 � 3 � 1034 years for the channel p ! KC N� and a
rate between 2� 1032 years and 8� 1034 years for the channel p ! �C N�. Since the
heavy vector boson mass, MX , is equal to 2:9�1016 GeV in the model, the dimension
6 operators provide a proton lifetime for the channel p ! eC �0 larger than 1036

years.

Fig. 9.2 The dependence of Meff
T on the value of ˛S.MZ/. This figure is reproduced from Fig. 1,

[97]
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A � term is introduced into the model via the Giudice-Masiero mechanism [117]
with a term in the Kähler potential given by

K � S� X� H NH
�2

C h:c:: (9.7)

With hSi � �2 m MPl; hXi D � �, they obtain � � � m MPl=�.2

9.1.1 Complete SU.5/ SUSY GUT: Yukawa Couplings

The W3 term contains the Yukawa interactions of the quark and lepton fields 10; N5
and 1. They assumed an exact R-parity under which 10, N5 and 1 are odd whereas H,
NH, H50 and H50 are even. The W3 term is symbolically given by

W3 D 10 Gu.X;Y/ 10 H C 10 Gd.X;Y/ N5 NH C N5 G�.X;Y/ 1 H
CM 1 GM.X;Y/ 1 C 10 G50.X;Y/ 10 H50 : (9.8)

The Yukawa matrices Gu, Gd, G� , GM and G50 depend on X and Y and the associated
mass matrices depend on their VEVs. The last term does not contribute to the mass
matrices because of the vanishing VEV of H50, but it is important for proton decay.
The pattern of fermion masses is determined by the U.1/ flavor symmetry that fixes
the powers of � � hXi=� for each entry of the mass matrices.3 In fact X is the only
field with non vanishing Q that takes a VEV. The powers of � in the mass terms are
fixed by the Q charges of the matter fields and of the Higgs fields H and NH. They
choose the Q charges of the matter fields in order to obtain realistic textures for the
fermion masses.

Q.10/ D .4; 3; 1/ ; Q.N5/ D .4; 2; 2/ ; Q.1/ D .1;�1; 0/ : (9.9)

Then the Yukawa mass matrices are of the form:

Gr.hXi; hYi/ij D �nijGr.hYi/ij; r D u; d; �;M : (9.10)

We expand Gr.hYi/ij in powers of hYi and consider the lowest order term at first.
Taking Gr.0/ij of order 1 and nij as dictated by the above charge assignments we

2We can identify the field S as the Polonyi field which spontaneously breaks SUSY in a
supergravity model. It then also generates all scalar masses. S has U.1/ charge, QS D 0.
3This is the U.1/ Froggatt-Nielsen mechanism [125].
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obtain4:

mu D 1p
2

2
4
�6 �5 �3

�5 �4 �2

�3 �2 1

3
5 vu ; md D mT

e D 1p
2

2
4
�5 �3 �3

�4 �2 �2

�2 1 1

3
5 vd�

4 ;

m� D 1p
2

2
4
�3 � �2

� 0 1

� 0 1

3
5 vu ; mmaj D

2
4
�2 1 �

1 0 0

� 0 1

3
5 M :

(9.11)

For a correct first approximation of the observed spectrum we need � � �C � 0:22,
�C being the Cabibbo angle. They have tanˇ D vu=vd � mt=mb�

4, which is small.
The factor �4 is obtained as a consequence of the Higgs and matter field charges Q.
Note a value of tanˇ near 1 is an advantage for suppressing proton decay.

The simple model as it now stands has order one parameters multiplying each
term in the Yukawa matrices. Thus there are many arbitrary parameters, i.e. 18 for
each 3 by 3 matrix. In addition it suffers from the SU.5/mass relation, ms

md
D m�

me
. In

order to fix this problem the authors add a term proportional to Y, the 75 dimensional
field,

W3 D 1

4
10˛ˇ Gu 10�ı H��˛ˇ�ı� C 1

4
10˛ˇ G50 10

�ı H50˛ˇ�ı

Cp
2 10˛ˇ Gd N5˛ NHˇ C 1

�

p
2 10˛ˇ Fd N5� NHı Y�ı˛ˇ

C1 G� N5˛ H˛ � 1

2
M 1 GM 1 C : : : (9.12)

where Gr .r D u; d; �;M; 50/ is proportional to Gr.hXi; 0/ of Eq. (9.8) and the
coupling Fd is an hXi-dependent matrix.

The term linear in Y in the previous equation is sufficient to differentiate the
spectra in the charged lepton and down quark sectors. They get the following Dirac
mass matrices:

mu;� D yu;�
vup
2
; md;e D yd;e

vdp
2

; (9.13)

yu D Gu y� D G� ;

yd D Gd C hYi
�

Fd yTe D Gd � 3
hYi
�

Fd ;

(9.14)

4In our convention Dirac mass terms are given by LTmR� and the light neutrinos effective mass
matrix is m�m�1

majm
T
� .



9.2 Complete SO.10/ Model: GUT Breaking and Doublet-Triplet Splitting 77

where vu, vd and hYi parametrize the vevs of H, NH and Y respectively. The fermion
spectrum can be easily fit by appropriately choosing the numerical values of the
matrices Gu, Gd, Fd, G� and GM . Here is one set of values which, they claim, fits
the data with � � hXi=� D 0:25, tanˇ D 1:5 and M D 0:9 � 1015 GeV.

Gu D
2
4
.�0:51C 0:61i/�6 .0:42 � 0:70i/�5 .0:27C 0:86i/�3

.0:42� 0:70i/�5 .�0:39C 0:52i/�4 .�0:30� 1:14i/�2

.0:27C 0:86i/�3 .�0:30 � 1:14i/�2 1:39

3
5 ; (9.15)

Gd D �4

2
4
.2:39� 1:11i/�5 .0:33 � 0:59i/�3 .0:13C 0:45i/�3

.0:87C 0:55i/�4 .2:76C 0:89i/�2 .0:69 � 0:51i/�2
.�1:50C 0:94i/�2 .0:45C 1:78i/ 1:94

3
5 ; (9.16)

hYi
�

Fd D �4

2
4
.0:38 � 0:18i/�5 .�0:16 � 0:06i/�3 .0:07C 0:04i/�3

.�0:08 � 0:05i/�4 .�0:20 � 0:15i/�2 .0:15 � 0:11i/�2

.�0:09C 0:12i/�2 .0:07C 0:14i/ �0:19

3
5 ;

(9.17)

G� D
2
4
.�0:78� 0:19i/�3 .0:52� 0:34i/� .1:38C 0:39i/�2

.�1:23 � 0:34i/� 0 .1:04C 1:31i/
.0:45C 1:18i/� 0 0:8C 1:2i

3
5 ; (9.18)

GM D
2
4
.1:50C 0:55i/�2 .1:41C 1:19i/ .0:35� 1:53i/�
.1:41C 1:19i/ 0 0

.0:35 � 1:53i/� 0 1:26C 1:48i

3
5 : (9.19)

9.2 Complete SO.10/ Model: GUT Breaking
and Doublet-Triplet Splitting

This is the model introduced in [148]. A natural solution to the doublet-triplet [DT]
splitting problem, avoiding severe fine-tuning is realized in SUSY SO.10/ by the
so called Dimopoulos-Wilczek (or the missing VEV) mechanism [73, 74, 100]. It
involves a coupling of two 10-plets of the form H.10/ A.45/H0.10/with the adjoint
A.45/ having a GUT scale VEV in the .B � L/-preserving direction:

hAi D i�2 Diag .a; a; a; 0; 0/ : (9.20)

This structure contributes to the triplet and not to the doublet masses, and therefore
can lead to natural DT splitting without fine-tuning.

In order to break SUSY SO.10/ to the supersymmetric standard model with a
stabilized DT sector, and for the subsequent breaking of the electro-weak symmetry,
the authors use a minimal low dimensional Higgs system. It consists of a single
adjoint A.45/, two pairs of spinor-antispinor superfields fC.16/ C NC.16/g and
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Table 9.3 U .1/A and Z2 charges Qi and !i of the superfield �i

A.45/ H.10/ H0.10/ C.16/ NC.16/ Z S C0.16/ NC0.16/ 161;2 163

Q 0 1 �1 9
10

� 1
2

2
5

2
5

1
10

� 13
10

� 11
10

� 1
2

! 1 0 1 0 0 1 0 0 0 P1;2 0

The transformations under U .1/A and Z2 are respectively �i ! eiQi�i and �i ! ei
2�
2 !i�i

fC0.16/C NC0.16/g, two 10-plets H.10/ and H0.10/, as well as two SO.10/ singlets
S and Z. The second spinorial pair C0 C NC0 is introduced, following [149], to avoid
pseudo-Goldstone degrees of freedom while maintaining the Dimopoulos-Wilczek
VEV structure for A [cf: Eq. (9.20)]. Note, the spinor-antispinor superfields are
introduced to spontaneously break SO.10/ ! SU.5/, while the adjoint superfield,
A, then breaks SU.5/ ! SU.3/ � SU.2/ � U.1/. The S and Z superfields are
needed to fix various VEVs in the required directions through their superpotential
couplings.

The gauge symmetry is supplemented by a Z2-assisted anomalous U .1/A
symmetry in order to stabilize the VEV pattern of Eq. (9.20) [150–153]. The charges
of the Higgs fields and those of the three matter families 16i under U .1/A � Z2 are
listed in Table 9.3. The superpotential of the symmetry breaking sector, consistent
with these symmetries, is W D W1 C W2 C W3, where

W1 D MA TrA2 C �A

M�

�
TrA2

2 C �0

A

M�

TrA4 ; (9.21)

W2 D C

�
a1
M�

Z A C b1
M�

C NC C c1S

�
NC0 C C0

�
a2
M�

Z A C b2
M�

C NC C c2S

�
NC;

W3 D �1 H A H0 C �
�H0 S Z4

 .H0/2

M4
�

C �2 H NC NC C �3

M�

A H0 C C0 C S Z2 C0 NC0

M2
:

The SO.10/ contractions in the C NC terms with coefficients b1;2 are in the singlet
channel. Matter parity is automatic, being part of U .1/A. The parities P1;2 and
charges of the first two families are relevant for the generation of quark and lepton
masses.

Using the SUSY preserving condition FZ D FS D 0, together with the choice
hCi D ˝ NC˛ D c; hAi ¤ 0 (which is one allowed option among the discrete set of
degenerate vacuum solutions), they get hC NC0i D h NC C0i D 0 and hC0i D h NC0i D 0.
The VEV of A is then determined entirely by W1 of Eq. (9.21). Setting FA D 0, they
find a solution in the B � L direction as in Eq. (9.20), with

a2 D MA M�
2.6�A C �0

A/
: (9.22)

With �A; �0
A � 1, M� � 1018 GeV, and MA � 1015 GeV they obtain a � MGUT �

2 � 1016 GeV. Demanding F-flatness conditions FC0 D F NC0 D 0 they get s D hSi D
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c2

M�

1 and z D hZi D c2

3a2, where 1 D b1a2�b2a1
a1c2�a2c1

; 2 D b1c2�b2c1
a1c2�a2c1

. Note that for all
dimensionless couplings in the Lagrangian being in the range .1=4�2/, the effective
couplings 1;2 can naturally take values as small as about 1=50.

The sum of the VEVs gets further constrained as follows. The anomalous U .1/A
symmetry, presumed to have a string origin, generates the Fayet-Iliopoulos term �

through quantum gravity, which is given by Dine et al. [154] � D g2stM
2
Pl

192�2
TrQA, where

gst denotes the string coupling and mPl ' 2:4 �1018 GeV is the reduced Planck mass.
In their model, the particle spectrum of Table 1 would lead to Tr.QA/ D �84=5.
With the charges in Table 9.3, the vanishing of DA D �CPi Qijh�iij2 D 0 (required
for preserving SUSY), yields c2Cjzj2Cjsj2 D � 5

2
�. Thus, the VEVs of all the fields

get determined. We see that quite naturally, the VEVs c; z � .few � 10/ � MG, and
s � .10�2 � 10�1/ � MG can arise, with the precise values depending on the order
one couplings.

Substituting the VEVs of the heavy fields in Eq. (9.21), they obtain the mass
matrices MD and MT for the SU.2/L doublets and SU.3/c-color triplets (written in
the SU.5/ notation):

5H 5H0 5 NC 5 NC0

MD;T D
N5H
N5H0

N5C
N5C0

0
BB@

0 �D;T�1a �2c 0

��D;T�1a MH0 0 0

0 0 0 �D;TY1
0 YD;T �D;TY2 MC0

1
CCA ;

(9.23)

with .�D; �T / D .0; 1/, .�D; �T/ D .3; 2/. Here MH0 D .�H0sz4/=M4� (which is in
the range .1011 � 1012/GeV), Y1;2 D 2a1;2za=.M�/ and YD;T � �3hAic=.M�/. The
suppressed mass ofH0 is crucial for the adequate suppression of d D 5 proton decay.
The entry MC0 in Eq. (9.23) (allowed by the stability of Higgs doublet mass) arises
from the operator SZ2C0 NC0=M2 and yields MC0 � .10�2 to 10�1/ � MGUT if M � z,
which happens if the superfields that are integrated out have GUT scale masses.

The zeros in the first column of Eq. (9.23) are ensured, in the presence of all
higher dimensional operators, for the doublet mass matrix by the U .1/A � Z2
symmetry. The main reason for this all-order stability of the Higgs doublet masses is
that all the effective Higgs fields (i.e. any positive power of Z, S and NCC) which have
super-large VEVs are positively charged under U .1/A, and can not couple to H2,
which is also positively charged. Thus, with �D D 0 one pair of the Higgs doublets
will be massless, while the remaining three pairs of doublets become superheavy.
The role of the Z2 symmetry is that it allows the coupling of H to H0 only through A
(or odd powers of A). Such couplings, however, do not generate a doublet mass due
to the VEV structure in Eq. (9.20) of hAi. The VEV pattern of hAi along the B � L
direction is also guaranteed to be stable because of the U .1/A symmetry. Indeed,
note that the symmetry U .1/A does not allow any superpotential coupling involving
A;C and NC of the form An.C NC/m. It is only these couplings which, if allowed, would
have upset the missing VEV pattern of Eq. (9.20). Their absence to all orders thus
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guarantees that the pattern of Eq. (9.20) is absolutely stable (barring of course SUSY
breaking at the TeV scale which is safe). As far as the color-triplets are concerned,
since �T ¤ 0 in Eq. (9.23) for the triplets, all four pairs become super-heavy, just as
desired.

The two massless Higgs doublets which emerge from Eq. (9.23) represent the
MSSM doublets hu and hd which acquire light masses after SUSY breaking. If
one denotes the down type doublets in H, H0, C and C0 by Hd, Hd

0, Cd and Cd
0

respectively, and likewise the up-type doublets. It is easy to see from Eq. (9.23)
that hu is composed entirely of H—i.e. hu D Hu, while hd is a mixture of four
components Hd; Hd

0; Cd and Cd
0 with H � cos � � hd, H0 � �2cYD

3Y2MH0

cos � � hd,

C � �2cMC0

9Y1Y2
cos � � hd and C0 � �2c

3Y2
cos � � hd. The angle � is determined in terms of

the parameters of the superpotential. It is related to the MSSM parameter tanˇ as
tanˇ D mt

mb
cos � . Note that, unlike in many SO.10/ models, the MSSM parameter

tanˇ is not required to be large here.5 It would turn out that conservative upper
limits on proton lifetime correspond to smaller values of tanˇ.

It can be shown that the effective low energy theory includes only the states of
the MSSM. Therefore gauge coupling unification can be evaluated as usual. The
effective color triplet mass defined by

1

Meff
T

D .M�1
T /11 D MH0

�21a
2

(9.24)

can have values in the range

Meff
T � .5 � 1016 � 6 � 1019/GeV; (9.25)

depending on the choice of the arbitrary parameters. This affects proton decay via
dimension five operators. In addition, the gauge bosons in SO.10/=ŒSU.3/�SU.2/�
U.1/� obtain mass of order MX D gG a. This affects proton decay via dimension 6
operators.

It turns out that requiring self-consistent gauge coupling unification (taking into
account two loop RG running from the weak scale to the GUT scale and one loop
threshold corrections at both the weak and GUT scales) gives a relation between
Meff

T and MX . They find

Meff
T ' 1019 GeV

�
1016 GeV

MX

�3 �
3

tanˇ

��
0:01

r

��
0:6

��

�

�
(

expŒ2�.�.2/
2; w ��

.2/
3; w � ı˛�1

3 /�

2:54 � 10�2

)
; (9.26)

5Note, this is a choice, since if �2 D 0, then cos � D 1 and hd D Hd .
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where

r D M˙

MX
D 4�0

AMX

g2GM�
�
�
1

15
� 1

300

�
(9.27)

with M˙ D M8 D 2M3 (i.e. the color octet mass, M8, and SU.2/ triplet
mass, M3), �� ' 0:6 accounts for the running of cos� , and ı˛�1

3 denotes
the deviation of ˛�1

3 from its central value of 1=0:1176. Note that the curly
bracket on the right side of Eq. (9.26) is fully determined for any given choice of
the SUSY parameters and ˛3.MZ/. This is only mildly dependent on variations
of m0 and M1=2. In Fig. 9.3 (taken from [148]) we show the result of RG
running.

Now, using expressions for proton decay rates one finds that the empirical
lower limit on � �1. p ! N�KC/ requires that Meff

T
>	 2:91 � 1019 GeV (for

reasonable scenarios for the Yukawa couplings), while that on � �1. p ! eC�0/
requires [owing to Eq. (9.26)] r <	 1=150. Using the particular choice of SUSY
parameters stated above, and the ranges for Meff

T and r as given in Eqs. (9.25)
and (9.27), they illustrate the correlation between Meff

T and MX in Fig. 9.4 (taken
from [148]) by confining to the ranges Meff

T ' .2:91 � 6/ � 1019 GeV and r '
.1=200�1=300/. Note, when MX decreases, dimension 6 nucleon decay dominates,
since Meff

T increases and vice versa, when MX increases, dimension 5 nucleon

Fig. 9.3 Evolution of the three standard model gauge couplings in the present SO.10/ model
including threshold corrections using ˛3.MZ/ D 0:1176 with CMSSM boundary conditions given
by ftanˇ;m0;M1=2; �g D f3; 1448:2GeV; 155:93GeV; 1TeVg (corresponding to mQq D 1:5TeV,

m QW D 130GeV), and with r D 1=250, Meff
T D 4 � 1019 GeV, Y1;2 D 2MX=45 for generating this

plot. This figure is reproduced from Fig. 1 of Babu et al. [148]
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Fig. 9.4 Correlations between Meff
T and MX for ftanˇ;m0;M1=2; �g D

f3; 1448:2GeV; 155:93GeV; 1TeVg (corresponding to mQq D 1:5TeV, m QW D 130GeV),
and ˛3.MZ/ D 0:1176. (a) r D 1=200. (b) r D 1=250. (c) r D 1=300. The vertical and
horizontal dashed lines correspond to the experimentally allowed lowest values of MX and Meff

T
which arise from limits on � �1. p ! eC�0/ and � �1. p ! N�KC/ respectively, for central
values of the relevant parameters. This figure is reproduced from Fig. 2 of Babu et al. [148]

decay dominates, since Meff
T decreases. Thus nucleon decay cannot be put off

indefinitely!

9.2.1 Complete SO.10/ SUSY GUT: Yukawa Couplings

In order to calculate the proton decay rates via dimension 5 and 6 operators one
needs to specify the Yukawa couplings which define the mass matrices and mixing
angles. In order to present a predictive theory of fermion masses and mixing,
the authors enlarge the symmetry groups to include a non-Abelian discrete flavor
symmetry, Q4 (the quaternionic group).6 The matter fields 161;2 transform as a

doublet,
�!
16 D .161; 162/. 163 and the Higgs, H, transform as Q4 singlets. Two

Q4 doublet flavon fields
�!
X ;

�!
Y both with VEVs along the .1; 0/ direction are also

utilized. The Q4 symmetry also enables the authors to successfully address the

SUSY FCNC problem [155]. With the U .1/A charge assignments of Q.
�!
16/ D

�11=10, Q.
�!
X / D 3=5 and Q.

�!
Y / D 7=5, the relevant operators, in accord with

the symmetry SO.10/�U .1/A � Z2 �Q4,7 which generate effective Dirac Yukawa

6See problem 7.
7We note, the Z2 symmetry is violated by some of the effective fermion mass operators independent
of the Z2 charges P1;2. It can however be extended to a Z4 symmetry which is then consistent with
all terms.
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couplings, are:

163 163 H;
�!
X
M�

�!
16 163 H;

SZ2A

M4�
�!
16

�!
16 H; (9.28)

Z3C

M4�
�!
16

�!
16 C0; AC

�!
Y

M�hZi2

�!
16 � 163 C 163 � �!

16
�
C0;

AC

M2�hZi2 .
�!
X

�!
16/.

�!
Y

�!
16/C0:

The higher order operators, suppressed by powers of 1=M�, and in the last two cases
by 1=hZi2 as well, may be generated by quantum gravity and in part by exchange of
additional heavy vector-like states. Note, the resulting mass matrices for the quarks
and charged leptons at the GUT scale have the form:

Nu1. N�1/ Nu2. N�2/ Nu3. N�3/

Mu.�/ D
u1.�1/
u2.�2/
u3.�3/

0
@

0 �u.�/�
0 0

��u.�/�0 0 �

0 � 1

1
Am0U ;

(9.29)

Nd1.e1/ Nd2.e2/ Nd3.e3/

Md.e/ D
d1.Ne1/
d2.Ne2/
d3.Ne3/

0
@

0 �d.e/�
0 C �0 0

��d.e/�0 � �0 �d.e/�
d
22 � C �d.e/�

0 � C �d.e/� 1

1
Am0D ;

where m0D D m0U cos �= tanˇ, �u;d D 1 and �� D �3; �e D 3. Equation (9.29)
provide a constrained system with fewer parameters than observables. A consistent
fit for all masses and mixing parameters as well as observed CP violation is obtained
with the choice � D 0:0508; � D �0:0188C 0:0333i; � D 0:106C 0:0754i; �0 D
1:56 � 10�4; �0 D �0:00474C 0:00177i; �d22 D 0:014e4:1i at the GUT scale. Upon
renormalization down to low energies (with mt.mt/ D 160GeV and tanˇ D 3),
these values reproduce the central values of the charged lepton masses. In addition,
for the quark masses they obtain

mu.2GeV/ D 3:55MeV; mc.mc/ D 1:15GeV;

md.2GeV/ D 6:45MeV; ms.2GeV/ D 137:6MeV; mb.mb/ D 4:67GeV:

(9.30)

Also for the CKM mixings they obtain at � D MZ ,

jVusj D 0:225 ; jVcbj D 0:0414 ; jVubj D 0:0034 ; jVtdj D 0:00878;

� D 0:334 ;  D 0:12 : (9.31)
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They find sin 2ˇ D 0:663. All these are in a reasonable agreement with experiments.
The right-handed neutrino Majorana mass matrix is given by

N�1 N�2 N�3

MN� D
N�1
N�2
N�3

0
@
b 0 0
0 b a
0 a 1

1
AM0 ;

: (9.32)

They obtain the predictions in the neutrino sector

q
�m2sol=�m

2
atm D m2=m3 D 0:13 and �13 D 3:6ı: (9.33)

Given the fermion Yukawa matrices, much more analysis can be done checking the
agreement with precision electroweak data and flavor violating processes at low
energies. Nevertheless, the authors then analyze the predictions for the dominant
proton decay rates which was input for Fig. 9.4.

9.3 Summary of Complete SUSY GUT Models

We have discussed two complete 4D SUSY GUT models with natural doublet-triplet
splitting. Each has a GUT breaking sector and doublet-triplet splitting sector which
contributes in a non-trivial way to gauge coupling unification and provides non-
trivial constraints on nucleon decay. In both cases, the models are consistent with
present bounds on the proton lifetime. In addition both models use the Froggatt-
Nielsen mechanism with a U.1/ family symmetry for the SU.5/ construction and
a discrete non-Abelian family symmetry for the SO.10/ construction to constrain
fermion Yukawa coupling matrices and thus fit, at low energies, fermion masses and
mixing angles. It is clear that in the case of a U.1/ family symmetry there are still
more free parameters than observables. So there are no predictions at low energies.
Nevertheless, once one fits the fermion masses and mixings, there are predictions
for nucleon decay rates and branching ratios. In general, however, a U.1/ family
symmetry cannot by itself ameliorate the SUSY flavor and CP problems. In the
case of the non-Abelian family symmetry, there are more constraints on the fermion
Yukawa couplings (in fact, in the charged fermion case there are only 10 arbitrary
Yukawa parameters plus tanˇ to fit the 13 low energy observables) and thus the
theory is more predictive.

Finally, it is easy to see that there are two, almost independent, sets of predictions.
The GUT breaking and doublet-triplet splitting sectors control threshold corrections
at the GUT scale which directly affect gauge coupling unification and the magnitude
of the proton lifetime. On the other hand, the GUT symmetry combined with a
flavor symmetry controls the Yukawa matrices and thus direct low energy tests of
the theory—at colliders and astrophysical consequences. In the next section, we will
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focus on the latter consequences of a SUSY GUT. We discuss an SO.10/ SUSY
GUT which has been thoroughly tested with low energy data. This may not be the
theory of the universe, but nevertheless we show how any such theory can be fully
tested by data.



Chapter 10
SO.10/ SUSY GUT and Low Energy Data

10.1 Yukawa Coupling Unification

Gauge coupling unification in supersymmetric grand unified theories (SUSY GUTs)
[29, 51, 72, 75–77] provides an experimental hint for low energy SUSY. However,
it does not significantly constrain the spectrum of supersymmetric particles. On
the other hand, it has been observed that Yukawa coupling unification for the
third generation of quarks and leptons in models, such as SO.10/ or SU.4/c �
SU.2/L � SU.2/R, can place significant constraints on the SUSY spectrum in
order to fit the top, bottom and tau masses [156–160]. These constraints depend
on the particular boundary conditions for sparticle masses chosen at the GUT
scale.1 In light of the present success of the LHC with the observation of the
Higgs boson with mass of order 125 GeV and significant lower bounds on gluino
and squark masses, it is a perfect time to review the viability of the constraints
on the sparticle spectrum resulting from gauge and third generation Yukawa
coupling unification.2 This is what we do in this chapter. In the first part of the
chapter we demonstrate the constraints on the sparticle spectrum coming just by
considering the third family. We perform a global �2 analysis assuming SO.10/
boundary conditions for sparticle masses and non-universal Higgs masses, which
we have called “just so Higgs splitting.” We fit the observables, MW ;MZ;GF; ˛

�1
em ;

˛s.MZ/;Mt;mb.mb/;M	 ;BR.B ! Xs�/;BR.Bs ! �C��/ and Mh in terms of 11
(or 12) arbitrary parameters. These fits then place significant constraints on the
upper bound for the gluino mass. As we will discuss later the LHC determined
lower bound on the gluino mass in these models is found to be of order 1:2TeV

1For a discussion of Yukawa coupling unification with different boundary conditions than
discussed here, see for example, [158, 161–164].
2For other analyses in this direction, see [165, 166].

© Springer International Publishing AG 2017
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[167]. Note, the analysis in this chapter is heavily dependent on more recent work
with my collaborators, see [167–170].

10.2 Third Family Model

Fermion masses and quark mixing angles are manifestly hierarchical. The simplest
way to describe this hierarchy is with Yukawa matrices which are also hierarchical.
Moreover the most natural way to obtain the hierarchy is in terms of effective higher
dimension operators of the form

W � � 163 10 163 C 163 10
45

M
162 C � � � : (10.1)

This version of SO.10/ models has the nice features that it only requires small
representations of SO.10/, has many predictions and can, in principle, find a UV
completion in string theory. The only renormalizable term in W is � 163 10 163
which gives Yukawa coupling unification

� D �t D �b D �	 D ��	 (10.2)

at MGUT . Note, one cannot predict the top mass due to large SUSY threshold
corrections to the bottom and tau masses, as shown in [171–174]. These corrections
are of the form (see Fig. 10.1 for the dominant corrections)

ımb=mb / ˛3 �MQg tanˇ

m2Qb
C �2t � At tanˇ

m2Qt
C log corrections: (10.3)

Fig. 10.1 The Feynman graphs corresponding to the dominant large tanˇ corrections to the
bottom quark mass
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So instead we use Yukawa unification to predict the soft SUSY breaking masses. In
order to fit the data, we need3

ımb=mb � �2%: (10.4)

We take �, MQg > 0, thus we need At < 0. For a short list of references on this
subject, see [156–160, 165, 175–177].

The SO.10/ GUT models with universal and non-universal gaugino masses are
both defined by three gauge parameters, ˛G;MG; �3; one large Yukawa coupling,
�; �; and tanˇ are obtained at the weak scale by consistent electroweak symmetry
breaking. There are 5 soft SUSY breaking parameters defined at the GUT scale: m16
(universal scalar mass for squarks and sleptons), M1=2 (universal gaugino mass), A0
(universal trilinear scalar coupling), and mHu ; mHd (up and down Higgs masses).4

The models with non-universal gaugino masses determined by “mirage mediation”
[178–181] have one additional parameter in the SUSY sector, ˛. We have

Mi D
�
1� g2Gbi˛

16�2
log

�
MPl

m16

��
M1=2 ; (10.5)

where bi D .�33=5;�1; 3/ for i D 1; 2; 3, M1=2 is the overall mass scale, and ˛ is
the ratio of the anomaly mediation to gravity mediation contributions. The size of ˛
plays a crucial role in determining the ratio of the gaugino masses and in addition
the spectrum that is consistent with Yukawa unification. Note, this expression is
equivalent to the gaugino masses defined in [182]. ˛ in the above expression is
related to the  in [181] as: 1


D ˛

16�2
lnMPL

m16
.

Given the GUT scale boundary conditions, we find that fitting the top, bottom
and tau masses forces us into the region of SUSY breaking parameter space with5

A0 � �2m16; m10 � p
2 m16; m16 > few TeV; �;M1=2 
 m16I (10.6)

and, finally,

tanˇ � 50: (10.7)

3Note, in 1993 in [70] we used Yukawa unification and the observed bottom and tau masses to
predict the top quark mass. We found Mt D 180˙ 15GeV with tanˇ � 50, where the error was
due to the large uncertainty in the value of ˛s.MZ/. At the time we didn’t know about the large
threshold corrections to the bottom quark mass proportional to tanˇ.
4We have non-universal Higgs masses which are necessary for robust radiative electroweak
symmetry breaking. Note, some authors have also considered the contribution of a U.1/X D-term.
In problem 8 we show that such a D-term decouples from the effective low energy theory assuming
U.1/X is broken at the GUT scale.
5This is true as long as ˛ . 2:5 [169].
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This result has been confirmed by several independent analyses [159, 160, 177].6

Although the condition, Eq. (10.6), is not obvious, it is however easy to see that
Eq. (10.7) is simply a consequence of third generation Yukawa unification, since
mt.mt/=mb.mt/ � tanˇ. In addition, radiative electroweak symmetry breaking

requires �2
mH

D m2Hd�m2Hu
2m210

� 13%, with roughly half of this coming naturally

from the renormalization group running of neutrino Yukawa couplings from MG

to MN	 � 1013 GeV [158].
It is very interesting that the above region in soft SUSY breaking parameter space

results in an inverted scalar mass hierarchy [ISMH] at the weak scale with the third
family scalars significantly lighter than the first two families [184]. These results
depend solely on SO.10/ Yukawa unification for the third family.7 An ISMH has
several virtues.

1. It preserves “naturalness” (for values of m16 which are not too large), since only
the third generation squarks and sleptons couple strongly to the Higgs.

2. It ameliorates the SUSY CP and flavor problems, since these constraints on CP
violating angles or flavor violating squark and slepton masses are strongest for
the first two generations, yet they are suppressed as 1=m216. For m16 > a few TeV,
these constraints are weakened [104, 128, 129, 185].

3. Super-Kamiokande bounds on 	. p ! KC N�/ > 3:9� 1033 years [101] constrain
the contribution of dimension 5 baryon and lepton number violating operators.
These are however minimized with �; M1=2 
 m16 [98, 99].

10.2.1 Procedure for Third Family Analysis

Renormalization Group Equations

The model parameters, summarized in Table 10.1, are defined at the grand unifica-
tion scale MG with the exception of tanˇ and � that are defined at the electroweak
scale. At the GUT scale, ˛G � ˛1.MG/ D ˛2.MG/ and ˛3.MG/ D ˛G.1 C �3/,
where �3 is the GUT scale threshold correction8 necessary to fit the strong coupling
to experimental data at the electroweak scale, MZ . In the third family analysis
with 3 gauge parameters, 1 Yukawa coupling, 5 SUSY boundary conditions, tanˇ
and �, i.e. 11 arbitrary parameters (or 12 with ˛), (the right-handed neutrinos
are integrated out at the GUT scale) we fit the 11 observables, MW ;MZ;GF; ˛

�1
em ;

6Note, different regions of parameter space consistent with Yukawa unification have also been
discussed in [159, 160, 183].
7The large Yukawa coupling for the third family is the driving force for the inverted scalar mass
hierarchy. However, the particular boundary conditions of Eq. (10.6) were shown to maximize the
effect.
8Without presenting a complete GUT we leave �3 as a free parameter. In this way, our analysis will
also apply to orbifold GUTs or string compactifications with a scale of order MG.
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Table 10.1 The SO.10/ GUT models with universal and non-universal gaugino masses are both
defined by three gauge parameters, ˛G;MG; �3; one large Yukawa coupling, �; �; and tanˇ are
obtained at the weak scale by consistent electroweak symmetry breaking

Sector Universal gaugino masses # Non-universal gaugino masses #

Gauge ˛G, MG, �3 3 ˛G, MG, �3 3

SUSY (GUT scale) m16, M1=2, A0, mHu , mHd 5 m16, M1=2, ˛, A0, mHu , mHd 6

Textures � 1 � 1

SUSY (EW scale) tanˇ, � 2 tanˇ, � 2

Total # 11 12

There are five SUSY parameters defined at the GUT scale: m16 (universal scalar mass for squarks
and sleptons), M1=2 (universal gaugino mass), A0 (universal trilinear scalar coupling), and mHu ; mHd

(up and down Higgs masses). The models with non-universal gaugino masses have one additional
parameter in the SUSY sector, ˛, which is the ratio of anomaly mediation to gravity mediation
contribution to gaugino masses

˛s.MZ/;Mt;mb.mb/;M	 ;BR.B ! Xs�/;BR.Bs ! �C��/ and Mh. Note, the two
flavor violating observables are included since they severely constrain the theory
in the large tanˇ limit. In order to evaluate the flavor violating observables, in this
third family analysis, we use the relevant observed CKM matrix elements.

We use the 2-loop MSSM RGEs for both dimensionful and dimensionless
parameters. Ideally, one should evolve all parameters to the scale of the heavy
scalars (m16 in this case) and integrate them out and proceed to evolve to the weak
scale using an effective theory without the first two generation scalars. We choose
an alternative approach and use the 2-loop MSSM RGE9 evolution down to the
weak scale and correct for the additional running by including 1-loop threshold
corrections to the relevant observables.10 This approximation eliminates the need to
define multiple effective theories. In our analysis, we have been careful to take into
account the corresponding threshold corrections for all observables.

Electroweak Observables

At the weak scale, we calculate the SUSY spectrum and the SUSY threshold
corrections to the fermion masses. Especially in the large tanˇ regime, these
SUSY threshold corrections are very important for the down type quarks and
charged leptons and can be at the 10 percent level in Yukawa-unified SUSY models
[173, 174]. We then use the threshold corrected fermion masses to determine the
tree level masses for the squarks and sleptons. In addition, we also determine the

9In scenarios with heavy scalars, it has been shown that the 2-loop contributions to the third
generation scalars can lead to dramatic consequences, like driving the stop mass squared negative
[186] and thus it is important to include the 2-loop RGEs in scenarios such as discussed here.
10For the calculation of Higgs mass, we define an effective theory at the scale MSUSY and interface
our calculation with the code by authors in [187].
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one-loop pole mass for the gluino and the CP-odd Higgs mass. The precision
electroweak observables MZ , MW , G�, ˛�1

em .MZ/, ˛s.MZ/ are calculated including
1-loop threshold corrections, using the procedure described in [188, 189]. Follow-
ing the prescription in [188], the condition for consistent radiative electroweak
symmetry breaking is also imposed at the weak scale, and for this, we use the
physical Z pole mass. The parameter � is fixed by this procedure via a separate
�2 minimization, and in the process, we fit the Z mass precisely to the physical Z
pole mass. In the calculation of MZ and MW , we only include the 1-loop corrections
from the third family scalars, since the first two generation scalars are integrated
out at m16. We assign a theoretical uncertainty of 0.5% to our calculation of
the electroweak observables (except for MZ) due to the approximate treatment of
thresholds described above. We also assign a 1% theoretical uncertainty to our
calculation of G�, since we neglect the SUSY vertex and box diagrams. Finally,
to compare to experiment, ˛em is evolved to zero momentum transfer.

Charged Fermion Masses and Mixing Angles

Below MZ , we integrate out all SUSY partners and electroweak gauge bosons to
obtain an effective SU.3/ � U.1/EM low energy theory. We use 1-loop QED and
3-loop QCD RGEs to renormalize to the appropriate scales and calculate the low
energy observables. We fit the top quark pole mass, and the bottom quark MS
mass is calculated at its respective mass. The 	 pole mass is calculated with 1-loop
electromagnetic threshold corrections.

To execute the steps elaborated so far, we use a code maton , originally
developed by Radovan Dermíšek to study Yukawa unification in the SO.10/ model
with D3 � ŒU.1/ � Z2 � Z3� family symmetry [190]. maton has been restructured
and extended appropriately (by Archana Anandakrishnan, B. Charles Bryant, Zijie
Poh, and Akin Wingerter) to adapt to the current analysis.

Higgs Mass

The observation of the Higgs boson at the LHC [191, 192] severely constrains the
parameter space of the model. Flavor constraints have already pushed the mass of
the first two generation scalars of Yukawa-unified SUSY models to values & 10TeV
[193]. In contrast, the third family scalars have mass about a few TeV, purely by the
effects of RGE running. In addition to the TeV range scalars, the large A-terms,
Eq. (10.6), make it easy to obtain a Higgs mass of about 125 GeV. We integrate out
all the scalars (including the third generation squarks and sleptons) below the scale
MSUSY, and calculate the Higgs boson mass using the dedicated code by the authors
of [187], that is best suited to our case where the sfermions are very heavy. Given
the boundary conditions,

�.MZ/; M1.MSUSY/; M2.MSUSY/; M3.MSUSY/; MSUSY; tanˇ; At.MSUSY/
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at the scale MSUSY D p
MQt1 � MQt2 , (where M1; M2; M3 are the gaugino masses at

the scale MSUSY), the routine [187] determines the Higgs mass by calculating the
corrections to the Higgs quartic coupling:

Mh D
s
�.MSUSY/p

2G�

�
1C ıSM.MSUSY/C ı�.MSUSY/


(10.8)

ı� are the contributions from chargino and neutralino diagrams. The quartic
coupling �.m16/ is given by:

�.MSUSY/ D 1

4

�
g2.MSUSY/C g02.MSUSY/


cos2 2ˇ (10.9)

C 3�4t
8�2

��
1 � g2 C g02

8�2t

�
X2t

M2
SUSY

� X4t
12M4

SUSY

�

where Xt D At � �= tanˇ. The parameters of the Lagrangian in the effective
theory with the scalars integrated out are then evolved to a common renormalization
scale MZ by means of the one-loop RGEs of the effective low energy theory. Since
some of the boundary conditions on the parameters are given at the SUSY scale,
MSUSY, and the others are given at the weak scale, MZ , an iterative procedure
is necessary. The resulting couplings evaluated at the weak scale account for the
all-order resummation of the leading logarithmic corrections involving powers of
log.MSUSY=MZ/.

We have to point out an important difference in our approach. The conventional
method is a bottom-up approach which uses the SM inputs of MZ , G�, ˛�1

em .MZ/,
˛s.MZ/, Mt, mb.mb/, M	 to determine the gauge and the Yukawa couplings at the
scales MSUSY and further constrain the GUT scale parameters. Gauge coupling
unification is obtained iteratively by varying parameters at the weak scale. We
instead like to predict these low energy observables and constrain the GUT scale
parameter space based on a global �2 fit to the data. In our calculation of the Higgs
mass, we take the gauge and Yukawa couplings as input at the scale MSUSY, obtained
from RGE evolution using maton and calculate the Higgs mass using these inputs.
The approach we adopt here is purely top-down. We have adapted the routine [187]
to suit this line of analysis. Nevertheless, we have compared the spectrum we obtain
from maton with that from softsusy11 [194] and find good agreement.

11Without making significant changes to softsusy or other publicly available codes, we find that
we can only make rough comparisons of the spectra. This is because to the best of our knowledge,
most of the currently available codes do not handle complex parameters. In addition, many do not
include right-handed neutrinos, and do not offer an easy way to implement the particular GUT
scale Yukawa texture of the model.
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Global Fit

In the last step of our calculation, we construct a �2 function in terms of the 11
calculated observables.

�2 D
X
i

jyi � ydatai j2
�2i

(10.10)

yi and ydatai are the theoretical prediction and experimental measurement, respec-
tively, for each observable. �i is the error on each observable, the theoretical and
experimental errors added in quadrature. We consider the �2 for the model as
a qualitative measure of the goodness of fit. Note that by good fits we refer to
�2=d:o:f : less than 1.0, 2.6, and 3.8 at 68%, 90%, and 95% confidence levels,
respectively. The number of degrees of freedom (d:o:f :) is defined to be the
difference between the number of observables used in the fit and the number of
parameters that are allowed to vary in the analysis. In the analysis we keep three
parameters, m16; M1=2; ˛, fixed and vary the others. Thus in each third family
analysis we have 2 d:o:f : We minimize the �2 function using the Minuit package
maintained by CERN [195]. Note that Minuit is not guaranteed to find the global
minimum, but will in most cases converge on a local one. For that reason, we iterate
O(100) times the minimization procedure for each set of input parameters, and in
each step we take a different initial guess for the minimum (required by Minuit) so
that we have a fair chance of finding the true minimum. This, of course, requires
large computing resources, and to that end we have used the Ohio Supercomputer
Center in Columbus. Note, when calculating flavor violating observables, we use
susy_flavor with the experimental input values for the light fermion masses
and mixing angles.

10.2.2 Results of Third Family Analysis

Consider first the SUSY spectrum in our analysis (see Table 10.2, taken from [167]).
The first and second family squarks and sleptons have mass of order m16, while
stops, sbottoms and staus are all significantly lighter. This is the inverted scalar
mass hierarchy which is a direct result of RG running. Nevertheless, gluinos are
always lighter than the third family squarks and sleptons, and the lightest charginos
and neutralinos are even lighter. Recent results from CMS and ATLAS give lower
bounds on the gluino mass. These bounds are given in terms of the CMSSM or
simplified models. The simplified models which are most relevant for our analysis
are those in which (a) the third family of squarks and sleptons are lighter than the
first two, and (b) the gluino is lighter than the stops and sbottoms. In this case,
the lower bound on the gluino mass is now of order 1.3–1.4 TeV, assuming the
branching ratio BR.Qg ! tNt Q�01/ D 100% or BR.Qg ! bNb Q�01/ D 100%. However, in
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Table 10.2 Benchmark points of the universal and non-universal gaugino masses

Benchmark model Ud Ue Uf DMa DMb

�3 	 �0:03 	 �0:03 	 �0:03 0.00 0.00

˛ 0 0 0 1.5 2.3

M1=2 300 400 600 450 600

� 879 924 974 660 1199

m16 20,000 20,000 20,000 20,000 29,781

�2=d.o.f. 0.58 1.12 1.98 0.92 0.86

MA 2300 2361 2751 1915 3093

MQg 1187 1309 1430 1130 1135

MQt1 3728 3760 3776 3612 5832

MQb1 4608 4640 4628 4770 7543

MQ	1 7861 7896 7890 6867 10,565

M
Q�01

195 217 239 474 799

M
Q�02

382 422 461 557 836

M
Q�03

882 927 977 663 1201

M
Q�04

887 932 982 694 1211

M
Q�

C

1
382 422 461 555 836

M
Q�

C

2
888 933 982 691 1210

˝h2 0.121 0.099

The benchmark points have been chosen with varying values of gluino mass. The model provides
good fits to all low-energy observables at 95% C.L.s for MQg < 2000GeV (see Fig. 10.3). In
the benchmark points for models consistent with Yukawa unification with small non-universal
contributions the gaugino spectrum becomes increasingly compressed with increasing ˛. The well-
tempered dark matter points were obtained by fixing �, M1=2 and ˛ to get the right admixture for
the LSP. The above fits were obtained by fixing m16 and M1=2 (to obtain unique gluino masses) and
thus yielding 2 d.o.f. for this system

Table 10.3 Gluino decay branching ratios into different final states for the five benchmark models
given in Table 10.2

Benchmark model Ud (%) Ue (%) Uf (%) DMa (%) DMb (%)

BR.Qg ! tNt Q�01/ 7 8 8 2 0

BR.Qg ! tNt Q�02/ 14 15 15 4 0

BR.Qg ! bNb Q�01/ 3 3 3 4 14

BR.Qg ! bNb Q�02/ 13 12 11 9 38

BR.Qg ! tb Q�˙

1 / 60 58 56 32 42

BR.Qg ! tb Q�˙

2 / 0 2 2 20 0

For each model, we give the dominant branching fractions. These ratios were calculated using
SDECAY [201]

our case when ˛ D 0 the usual simplified models do not apply, since gluinos decay
with branching ratios Qg ! tNt Q�0.1;2/, bNb Q�0.1;2/, tNb Q��

.1;2/, bNt Q�C
.1;2/, g Q�0.1;2;3;4/ which are

all significant (see Table 10.3).
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When ˛ < 4, there are small non-universal contributions to the gaugino masses.
The additional degree of freedom, ˛, allows tuning of the ratios of M1 and M2.
As ˛ is gradually increased from 0, there are two effects to the spectrum. The
first one is that the wino component of the LSP begins to increase. Therefore, it
is possible to obtain the correct relic dark matter density by tuning M1=2, ˛, and
�. Secondly, since the beta-function coefficient is negative for SU(3), the gluino
mass decreases with increasing ˛ until it becomes the lightest supersymmetric
particle for ˛ & 3. The region in the parameter space that fits the measured
value of dark matter relic abundance is of special interest and was studied in
[196] (see also [181, 197, 198]). We show two sample benchmark models which
reproduce the measured relic abundance [199] in Table 10.2. Point DMa is a well-
tempered bino-wino-higgsino mixture whereas point DMb has a bino-wino mixture.
The spin independent scattering cross-section for the benchmark point DMa is
1:6�10�8 pb. Note that this benchmark point is now ruled out by LUX results [200],
which exclude spin independent scattering cross-sections down to 6 � 10�9 pb.
An LSP of higher mass can be obtained by increasing the values of M1=2 and �
while maintaining the relic density with bino-wino-higgsino well-tempering and be
consistent with the LUX result. On the other hand, the spin independent scattering
cross section for point DMb is below the bounds from LUX at 3:5 � 10�9 pb. The
dominant decay modes of the gluino for points DMa and DMb are also very similar
to the universal case with large decay fractions into the 3-body modes: tb Q�˙, tNt Q�0,
bNb Q�0 (see Table 10.3).

In Fig. 10.3 we present �2 as a function of the gluino mass. More specifically,
of the 11 parameters defining the third-family SO(10) Yukawa unified model (with
˛ D 0), we fix m16 D 20TeV, and then minimize �2 for 15 values of M1=2 between
0 and 600 GeV by varying all the other parameters. The x axis in Fig. 10.3 is MQg.
The data points are indicated in Fig. 10.3 by crosses, and we have connected them
using a cubic spline interpolation to guide the eye. We calculate the 68%, 90% and
95% confidence level intervals using the �2 distribution for 2 degrees of freedom;
the corresponding values are indicated in Fig. 10.3 by the horizontal red lines. The
simple explanation for this result is that as the gluino mass increases the magnitude
of At at MSUSY also increases, due to the infra-red fixed point. This has the effect of
decreasing the light Higgs mass because now Xt >

p
6MSUSY which goes beyond

maximal mixing (see Fig. 10.2). As a consequence, there appears to be an upper
bound on the gluino mass of order 2 TeV, which makes gluinos inevitably observable
at the LHC 14 TeV.12

In [167] we evaluated the lower bound on the gluino mass by re-analyzing
ATLAS and CMS data and making full use of the code CHECKMATE [204].
The procedure of [168] was performed for each benchmark model considered

12If we increase m16 to 30 TeV, the upper bound on the gluino mass is now 2.8 TeV. Therefore
for m16 D 25TeV we expect MQg . 2:4TeV. Still observable at LHC II, but with less than a 5 �
discovery. CMS and ATLAS can obtain a 5 � discovery of gluinos with mass less than 	2TeV
with 300 fb�1 of data [203].
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Fig. 10.2 Higgs mass plotted as a function of At, taken from Fig. 2, [202]. The value of the Higgs
mass increases as tanˇ increases. Reprinted from Nuclear Physics B 461, M. Carena, M. Quiros
and C.E.M. Wagner, “Effective potential methods and the Higgs mass spectrum in the MSSM,”
Page 418, Copyright (1996), with permission from Elsevier

here to determine the limits from the 3 CMS analyses. In addition, the program
CheckMATE13 was used to evaluate bounds on the gluino mass for each model.
CheckMATE requires as input a HepMC [209] file containing generated events and
the production cross section of the sparticles of interest along with the total 1�
uncertainty on the cross section. We use PYTHIA 8.175 [210] to generate 10,000–
20,000 events in HepMC format.14 The gluino production cross section and its
uncertainty are obtained from [211]. It was found that the ATLAS analysis ATLAS-
CONF-2013-061 [212], on which we elaborate below, is the most constraining
analysis for each of the benchmark points in the models.

The ATLAS-CONF-2013-061 analysis is a search for final states with large
missing transverse momentum, at least four, six, or seven jets, at least three jets
tagged as b-jets, and either zero or at least one lepton. It was performed atp
s D 8TeV with 20.1 fb�1 of data. The results are interpreted in the context of

a variety of simplified models. The simplified models considered that are relevant
to the benchmark models are the Gbb, Gtt, and Gtb models. These models assume
100% branching ratios of a gluino to bNb Q�01, tNt Q�01, and tb Q�1̇ , respectively. The most
constraining signal regions on the benchmark models are presented in Table 10.4.
They are constrained most by the signal region requiring at least 1 lepton and at
least 6 jets. Each of the benchmark points in these cases has a sizeable gluino
branching fraction into tb Q�1̇ . The mass splitting of the lightest chargino and the
lightest neutralino is large enough for the chargino to decay to a W whose decay

13CheckMATE uses Delphes 3 [205], FastJet [206, 207], and the Anti-kt jet algorithm [208].
14We are using HepMC 2.06.09.
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Table 10.4 Most constraining signal region for the universal and dark matter scenarios

Baseline selection: 
 1 signal lepton (e; �), pj1T > 90 GeV, Emiss
T > 150 GeV,


 4 jets with pT > 30 GeV, 
 3 b-jets with pT > 30 GeV

Signal region N jets Emiss
T (GeV) mT (GeV) mincl

eff (GeV) Emiss
T /

q
Hincl

T (GeV
1
2 )

SR-1l-6J-B 
6 >225 >140 >800 >5

A detailed description of the parameters in this table can be found in [212]

products are energetic enough to be seen in the detector. We found that the lower
bound on MQg in Yukawa-unified SO(10) SUSY GUTs is generically �1.2 TeV at the
1� level.

Thus we find that the third family analysis with universal or non-universal
gaugino masses with ˛ � 2:5 is consistent with low energy data.

1. In order to fit low energy data we are forced to a restricted region of soft SUSY
breaking parameters.

2. We therefore predict a well defined spectrum of SUSY particle masses.
3. In particular the gluino is expected to have mass in the range 1:2TeV . MQg .
2TeV. (See the sentence preceding footnote 12 for more details.)

10.3 SO.10/ GUT with D3 � ŒU.1/ � Z2 � Z3� Family
Symmetry

A complete model for fermion masses was given in [146, 190]. Using a global �2

analysis, it has been shown that the model fits all fermion masses and mixing angles,
including neutrinos, and a minimal set of precision electroweak observables. The
model is consistent with lepton flavor violation and lepton electric dipole moment
bounds. In several recent papers, [170, 193, 213–215], the model was also tested by
flavor violating processes in the B system.

The model is an SO.10/ SUSY GUT with an additional D3 � ŒU.1/ � Z2 � Z3�
family symmetry.15 The three families of quarks and leptons are contained in three
16 dimensional representations of SO.10/ f16a; 163g with 16a; a D 1; 2 a D3 flavor
doublet (see Sect. 10.4 for details on D3). The two MSSM Higgs doublets Hu and
Hd are contained in a 10 where the Higgs, 10, and 163 are both D3 singlets. The
symmetry group fixes the following structure for the superpotential

W D Wf C W� : (10.11)

15For related charged fermion analyses in SO.10/ SUSY GUTS with D3 � U.1/ (or SU.2/ �
U.1/n) family symmetries, see [216] (or [139, 140, 217]). Note also that the groups D3 and S3 are
isomorphic.
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Fig. 10.3 The �2 function for fixed m16 D 20TeV and different values of M1=2 corresponding
to the gluino masses indicated on the x-axis (figure taken from [168]). In minimizing �2 for each
point, we followed the same procedure as in [213] except that we now do not penalize for gluino
masses smaller than a certain lower bound. The confidence level intervals correspond to the �2

distribution with two degrees of freedom

The superpotential resulting in charged fermion masses and mixing angles is given
by

Wf D � 163 10 163 C 16a 10�a (10.12)

C N�a.M� �a C 45
�a

OM 163 C 45
Q�a
OM 16a C A 16a/ ;

where M� D M0.1 C ˛X C ˇY/ includes SO.10/ breaking VEVs in the X and Y
directions, �a; Q�a .D3 doublets/; A .1B singlet/ are SO.10/ singlet flavon fields,
and OM; M0 are SO.10/ singlet masses. The fields 45; A; �; Q� are assumed to
obtain VEVs h45i � .B � L/ MG, A 
 M0 and

h�i D
�
�1

�2

�
; h Q�i D

�
0
Q�2
�

(10.13)

with �1 > �2.
As can be seen from the first term on the right-hand side of (10.12), Yukawa

unification �t D �b D �	 D ��	 at MG is obtained only for the third generation,
which is directly coupled to the Higgs 10 representation. This immediately implies
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large tanˇ � 50 at low energies and constrains soft SUSY breaking parameters, as
discussed earlier. The effective Yukawa couplings of the first and second generation
fermions are generated hierarchically via the Froggatt-Nielsen mechanism [125].
The Froggatt-Nielsen states �a; N�a transform as a 16; 16, respectively and both
are D3 doublets. They receive mass of O.MG/ as M� acquires an SO(10) breaking
VEV. Once they are integrated out, they give rise to effective mass operators which,
together with the VEVs of the flavon fields, create the Yukawa couplings for the first
two generations. This mechanism breaks systematically the full flavor symmetry and
produces the right mass hierarchies among the fermions.

The superpotential, [Eq. (10.12)] results in the following charged fermion
Yukawa matrices16:

Yu D
0
@

0 ��0  � �
�0  Q�  �

�� � �� 1

1
A �

Yd D
0
@

0 ��0 � �
�0 Q� �

�� � � �� � 1

1
A � (10.14)

Ye D
0
@

0 �0 �3 � � �
��0 3 Q� �3 � �
3 � � 3 � 1

1
A �

with

� D �2=�1I Q� / Q�2= OMI (10.15)

� / �1= OMI �0 � .A=M0/I

� D 1C ˛

1 � 3˛
I  � ˇ 
 ˛:

Let us now discuss neutrino masses. In the three 16s we have three electroweak
doublet neutrinos (�a; �3) and three electroweak singlet anti-neutrinos ( N�a; N�3).17

The superpotential Wf also results in a neutrino Yukawa matrix:

Y� D
0
@

0 �0 ! �3� � �
��0 ! 3 Q� ! �3 � �
3
2
� � ! 3

2
� ! 1

1
A � (10.16)

16It has been shown in [140] that excellent fits to charged fermion masses and mixing angles are
obtained with this Yukawa structure.
17In an equivalent notation, we have three left-handed neutrinos (�La � �a; �L3 � �3) and three
right-handed neutrinos defined by (�Ra � N��

a ; �R3 � N��

3 ).
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with ! D 2 �=.2 � � 1/ and a Dirac neutrino mass matrix given by

m� � Y�
vp
2

sinˇ: (10.17)

Note, that the theory is very predictive since, as a result of the GUT and family
symmetries, the number of arbitrary parameters is restricted significantly.

In addition, the anti-neutrinos get GUT scale masses by mixing with three
SO.10/ singlets fNa; a D 1; 2I N3g transforming as a D3 doublet and singlet
respectively. The superpotential for the neutrino sector is given by

W� D 16 .�2 Na 16a C �3 N3 163/ (10.18)

C 1

2
.Sa Na Na C S3 N3 N3/ :

We assume 16 obtains a vev, v16, in the right-handed neutrino direction, and hSai D
Ma for a D 1; 2 (with M2 > M1) and hS3i D M3.18

We thus obtain the effective neutrino mass terms given by

W eff
� D � m� N� C N� V N C 1

2
N MN N (10.19)

with

V D v16

0
@
0 �2 0

�2 0 0

0 0 �3

1
A ; MN D diag.M1; M2; M3/: (10.20)

A simple family symmetry giving the desired form of the superpotential19 is
D3 � U.1/ � Z2 � Z3 where the D3 charges were defined earlier, while the U.1/
charge assignments are (1 for 163, 2 for 16a, �2 for Na, �1 for N3, �1 for 45, 0
for 16 and �a) and everyone else fixed by these. In addition we assign Z2 charges
.163; 16a;N3;Na; �a; �a/ odd, all others even and Z3 charges ˛ D e

2�i
3 for all fields,

except 45 with charge 1. Note, that Z2 can also be interpreted as a family reflection
symmetry which guarantees an unbroken low energy R parity [87].

The electroweak singlet neutrinos f N�;Ng have large masses V;MN � MG. After
integrating out these heavy neutrinos, we obtain the light neutrino mass matrix in
the charged lepton flavor basis given by

Qm� D UT
l mT

� M
�1
R m� Ul D UT

l M Ul; (10.21)

18These are the most general set of vevs for �a and Sa. The zero vev for Q�1 can be enforced with a
simple superpotential term such as S Q�a Q�a.
19Note, highly suppressed terms of the form Sa Na N3 Q�a �2a are still allowed. This too can be
forbidden by an additional discrete Z4 symmetry.
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where the effective right-handed neutrino Majorana mass matrix is given by:

MR D V M�1
N VT � diag.MR1 ;MR2 ;MR3 /; (10.22)

with

MR1 D .�2 v16/
2=M2; MR2 D .�2 v16/

2=M1; MR3 D .�3 v16/
2=M3: (10.23)

Ul is the 3 � 3 unitary matrix for left-handed leptons needed to diagonalize Ye
[Eq. (10.14)], i.e. YD

e D U�

Ne Ye Ul and also U such that UT Qm� U D QmD
� D

diag.m�1; m�2; m�3/, then the neutrino mixing matrix is given by U D UPMNS in
terms of the flavor eigenstate (�˛, ˛ D e; �; 	) and mass eigenstate (�i, i D 1; 2; 3)
basis fields with

�˛ D
X
i

.UPMNS/˛i �i: (10.24)

For UPMNS we use the notation of [218] with

 
�e
��
�	

!
D
 

c12c13 s12c13 s13e�iı

�s12c23 � c12s23s13eiı c12c23 � s12s23s13eiı s23c13
s12s23 � c12c23s13eiı �c12s23 � s12c23s13eiı c23c13

! 
ei˛1=2�1
ei˛2=2�2
�3

!
(10.25)

The 3�3Majorana mass matrix is of the general form discussed by many authors
[219]. We have

M D P1 M1 P1 C P2 M2 P2 C P3 M3 P3 (10.26)

with

M1 D
0
@
0 0 0

0 .�0 j!j/2 �3 �0 � j� � !j
0 �3 �0 � j� � !j .3 � j� � j/2

1
A
�
� v sinˇp
2 �2 v16

�2
M2I (10.27)

M2 D
0
@

.�0 j!j/2 �3 �0 j Q� !2j 3 �0 � j� !j
�3 �0 j Q� !2j .3 j Q� !j/2 �9 � j Q� � !j
3 �0 � j� !j �9 � j Q� � !j .3 � j� j/2

1
A
�
� v sinˇp
2 �2 v16

�2
M1I

(10.28)

M3 D
0
@
. 3
2
� j� !j/2 j�j . 3

2
� j!j/2 3

2
� j� !j

j�j . 3
2
� j!j/2 . 3

2
� j!j/2 3

2
� j!j

3
2
� j� !j 3

2
� j!j 1

1
A
�
� v sinˇp
2 �3 v16

�2
M3 (10.29)
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and

P1 D
0
@
1 0 0

0 e�i˚! 0

0 0 e�i.˚�C˚�/

1
A I (10.30)

P2 D
0
@
e�i˚! 0 0

0 e�i.˚Q�C˚!/ 0

0 0 e�i˚�

1
A I (10.31)

P3 D
0
@
e�i.˚!C˚�/ 0 0

0 e�i˚! 0

0 0 1

1
A : (10.32)

M1; M2; M3 are in general complex rank 1 mass matrices. However only the
difference in their overall phases may be observable. Thus, there are, in principle,
two new CP violating phases in the neutrino sector, in addition to the four phases
already fixed by charged fermion masses and mixing angles. We shall impose the
constraint that neutrino Majorana masses Mi are all real. This eliminates two
arbitrary phases. We note that the best fits with free phases for Mi are very close
numerically to our zero phase model.

10.3.1 Full Three Family Global �2 Analysis

Procedure

Here we just explain the additional steps in the procedure. There are now 24 ( or 25
with ˛) parameters in the model (see Table 10.5). First, the GUT scale parameters

Table 10.5 The model has 24 free parameters for universal gaugino masses boundary conditions

Sector Universal gaugino masses No. Mirage mediated gaugino masses No.

Gauge ˛G, MG, �3 3 ˛G, MG, �3 3

SUSY
(GUT scale)

m16, M1=2, A0, mHu , mHd 5 m16, M1=2, A0, mHu , mHd , ˛ 6

Yukawa
textures

�, �0, �, , � , Q�, �, �, �� , �Q� , �� 11 �, �0, �, , � , Q�, �, �, �� , �Q� , �� 11

Neutrino MR1 , MR2 , MR3 3 MR1 , MR2 , MR3 3

SUSY
(EW scale)

tanˇ, � 2 tanˇ, � 2

Total 24 25

For mirage mediated gaugino masses boundary condition, there is an additional input parameter,
˛, which determines the amount of splitting of the gaugino masses at GUT scale
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are RGE evolved to the right-handed neutrino scale where the RH neutrinos are
integrated out. The right-handed neutrinos have three different scales associated
with them, and the most relevant one is the third-family RHN that is mostly
responsible for splitting the up and down type Higgs masses. We therefore choose
to integrate out all the right-handed neutrinos at one single scale, MN	 D MR3 .

Charged Fermion Masses and Mixing Angles

Below MZ , we integrate out all SUSY partners and electroweak gauge bosons to
obtain an effective SU.3/ � U.1/EM low energy theory. We use 1-loop QED and
3-loop QCD RGEs to renormalize to the appropriate scales and calculate the low
energy observables. We fit the top quark pole mass, and the bottom and charm
quark MS masses are calculated at their respective masses. All the other light
quark MS masses are calculated at the scale of 2 GeV. We fit seven observables
relevant to quark masses, three charged lepton masses, and six CKM observables.
The theoretical uncertainty in their calculation is again estimated to be 0.5%. Since
the light quark masses are not measured to very high precision, we choose to fit
multiple correlated observables. These include the MS strange quark mass, the mass
ratio md=ms and the mass ratio Q defined in the PDG [220] as

Q2 D m2s � 1=4.mu C md/
2

m2d � m2u
; or equivalently,

�
mu

md

�2
C 1

Q2

�
ms

md

�2
D 1

(10.33)

The CKM matrix is calculated from the left and right mixing matrices by diago-
nalizing the Yukawa matrices and including the SUSY threshold corrections. Six
CKM observables (jVusj, jVubj, jVcbj, jVtdj, jVtsj and sin 2ˇ) are included in our
global fit analysis. To account for the inconsistencies in the inclusive and exclusive
measurements of jVubj and jVcbj, we allow our result to be within the experimental
error from both the inclusive and the exclusive measurement. We also separately fit
either the inclusive or exclusive values of jVubj and jVcbj. The pole masses in the
lepton sector are calculated with 1-loop electromagnetic threshold corrections.

To execute the steps elaborated so far, we use a code maton , originally
developed by Radovan Dermíšek to study Yukawa unification in the SO.10/ model
with D3� ŒU1�Z2�Z3� family symmetry [190]. maton has been restructured and
extended appropriately (by Archana Anandakrishnan, B. Charles Bryant, Zijie Poh,
and Akin Wingerter) to adapt to the current analysis.

Neutrino Sector

We are fitting five observables in the neutrino sector: the mixing angles �12, �23, �13,
and the mass-squared differences �m31 � m23 � m21 and �m21 � m22 � m21. The
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most dramatic change in the experimental determination of the neutrino parameters
in recent years comes from the Daya Bay and Reno collaborations [221, 222] that
have confirmed that �13 � 9ı is indeed large. Moreover, there are tentative hints
that �23 is not maximal [223, 224]. Whereas [223] sees a preference at � 2� � 3�

for the first octant, i.e. �23 < 45ı, [224] finds an equal probability for �23 being
larger or smaller than 45ı. In the following, we use the best-fit values and the 3�
uncertainties quoted by the NuFIT collaboration [224] which are in agreement with
[223] at 3� .

Flavor Physics

The strongest constraints on the model come from B-physics. For calculating the fla-
vor observables, we use two publicly available codes, namely susy_flavor [225]
and SuperIso [226, 227]. Since the boundary conditions that we impose at the
GUT scale may generate large off-diagonal and in general complex entries at the low
scale, susy_flavor is better adapted to our needs. Note that susy_flavor,
in contrast to comparable programs that calculate similar processes, does not
assume minimal flavor violation (MFV), and allows for general, full three family,
complex soft parameters. This is particularly important in our case, since we are
calculating several CP violating observables and need to take into account20 the
complex phases in the soft parameters. Hence, susy_flavor is our default choice
for all flavor observables with the following exceptions. For B ! Xs� , we use
SuperIso, since susy_flavor does not include the NNLO SM corrections.
We have verified that the discrepancy between susy_flavor and SuperIso
in the parameter space that is of interest to us is at most 10% and typically
less than 7%. Also, we use SuperIso for the observables connected to the
decay process B ! K��C��, since susy_flavor does not provide them. It
is important to note that SuperIso has some built-in assumptions that prove to
be too restrictive in our case. E.g. SuperIso assumes all soft parameters to be
real, and only takes the diagonal entries of the third-family trilinear couplings into
account. As a consequence, we have assigned larger theoretical uncertainties to the
values calculated by SuperIso. Additional sources of uncertainties in the flavor
observables derive from the theoretical determination of the B meson decay constant
and from the experimental measurements of the CKM matrix elements.

LHCb has recently measured the Br.Bs ! �C��/ [228] which is in good
agreement with the SM prediction. This pushes the CP-odd Higgs mass to a few
TeV and hence leads to the Higgs decoupling limit. Thus the light Higgs is predicted
to be SM-like. The recent observation of zero-crossing in the forward-backward
asymmetry of B ! K��C�� constrains the Wilson coefficient C7 to be of the same

20We calculate the particle spectrum using maton, see comments on p. 104. To the best of our
knowledge, there is currently no publicly available spectrum generator that fully takes into account
all the complex phases of the MSSM.



106 10 SO.10/ SUSY GUT and Low Energy Data

sign as that in the SM. This imposes the additional constraint for the model that if
� > 0, in order to satisfy the branching fraction observed in the process B ! Xs�

the first two generation scalars have to be heavier than at least 10 TeV.

Global Fit

In the last step we define a �2 function and fit the 45 observables in Table 10.6 (see
[170]).

10.3.2 Results: Global �2 Analysis

Several benchmark points with the results of the global �2 analysis are given in
Tables 10.9, 10.10, 10.11, 10.12 and a plot of �2 as a function of the parameter m16
is given in Fig. 10.4 or �2 contours in the two dimensional plane of MQg vs. m16 is
given in Fig. 10.6. Let us now discuss some features of the results.

Inclusive vs. Exclusive jVubj and jVcbj

Due to the discrepancy between the values of jVubj and jVcbj determined from inclu-
sive and exclusive semi-leptonic decay. We define three different �2 functions:

1. jVubj and jVcbj are taken to be the inclusive values
2. jVubj and jVcbj are taken to be the exclusive values
3. jVubj and jVcbj are taken to be the average of inclusive and exclusive values with

error bars overlapping with the error bars of both the inclusive and the exclusive
measurements

The results of these three analyses are shown in Fig. 10.4. We see that for both the
universal boundary condition ˛ D 0 and mirage boundary condition with ˛ D 1:5,
the �2/d.o.f. obtained by fitting to the inclusive values are the biggest. Hence, we
predict that the exclusive values of jVubj and jVcbj are the correct values for both
universal and mirage gaugino masses.

Since the �2 difference between case (2) and case (3) is small and to be
conservative, the analyses of the rest of the paper are done for case (3), where jVubj
and jVcbj are the average of the inclusive and exclusive values.
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Table 10.6 Forty-five observables that we fit

Observable Exp. value Ref. Program Th. error

MZ 91:1876 ˙ 0:0021GeV [47] Input 0:0%

MW 80:385˙ 0:015GeV [47] maton 0:5%

˛em 1=137:035999074.44/ [47] maton 0:5%

G� 1:1663787.6/� 10�5 GeV�2 [47] maton 1%

˛3.MZ/ 0:1185˙ 0:0006 [47] maton 0:5%

Mt 173:21˙ 0:51˙ 0:71GeV [47] maton 0:5%

mb.mb/ 4:18˙ 0:03GeV [47] maton 0:5%

M	 1776:82 ˙ 0:16MeV [47] maton 0:5%

mb � mc 3:45˙ 0:05GeV [47] maton 10%

mc.mc/ 1:275˙ 0:025GeV [47] maton 0:5%

ms.2 GeV/ 95˙ 5MeV [47] maton 0:5%

ms=md .2 GeV/ 17–22 [47] maton 0:5%

Q 21–25 [47] maton 5%

M� 105:6583715.35/MeV [47] maton 0:5%

Me 0:510998928.11/MeV [47] maton 0:5%

jVusj 0:2253˙ 0:0008 [47] maton 0:5%

jVcbj (Inclusive) 0:0422˙ 0:0007 [47] maton 0:5%

jVcbj (Exclusive) 0:0395˙ 0:0008 [47] maton 0:5%

jVcbj (Both) 0:0408˙ 0:0021 [47] maton 0:5%

jVubj (Inclusive) 0:00441 ˙ 0:00024 [47] maton 0:5%

jVubj (Exclusive) 0:00328 ˙ 0:00029 [47] maton 0:5%

jVubj (Both) 0:00385 ˙ 0:00086 [47] maton 0:5%

jVtdj 0:00840 ˙ 0:0006 [47] maton 0:5%

jVtsj 0:0400˙ 0:0027 [47] maton 0:5%

sin 2ˇ 0:682˙ 0:019 [47] maton 0:5%

�K .2:2325˙ 0:0155/ � 10�3 [47] susyflavor[225] 10%

�mBs=�mBd 35:0345 ˙ 0:3884 [47] susyflavor[225] 20%

�mBd .3:337˙0:033/�10�10 MeV [47] susyflavor[225] 20%

�m221 .7:02–8:09/ � 10�5 eV2 (3�
range)

[229] maton 0:5%

�m231 .2:317–2:607/ � 10�3 eV2

(3� range)
[229] maton 0:5%

sin2 �12 0:270–0:344 (3� range) [229] maton 0:5%

sin2 �23 0:382–0:643 (3� range) [229] maton 0:5%

sin2 �13 0:0186–0:0250 (3� range) [229] maton 0:5%

Mh 125:7˙ 0:4GeV [47] splitsuspect[187] 3 GeV

BR.b ! s�/ .343˙ 21˙ 7/� 10�6 [230] superiso[227] 40%

BR.Bs ! �C��/ .2:8
C0:7
�0:6 /� 10�9 [231] susyflavor[225] 20%

(continued)
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Table 10.6 (continued)

BR.Bd ! �C��/ .3:9
C1:6
�1:4 /� 10�10 [231] susyflavor[225] 20%

BR.B ! 	�/ .114˙ 22/ � 10�6 [230] susyflavor[225] 50%

BR.B !
K��C��/1�q2�6 GeV2

0:34˙ 0:03˙ 0:04˙
0:02

C0:00
�0:03 � 10�7

[232] superiso[227] 105%

BR.B !
K��C��/14:18�q2�16 GeV2

0:45˙ 0:06˙ 0:04˙
0:04

C0:00
�0:05 � 10�7

[232] superiso[227] 190%

q20.AFB.B ! K��C��// 4:9˙ 0:9 GeV2 [232] superiso[227] 25%

FL.B !
K��C��/1�q2�6 GeV2

0:65
C0:08C0:03
�0:07�0:03

[232] superiso[227] 45%

FL.B !
K��C��/14:18�q2�16 GeV2

0:33
C0:08C0:03
�0:07�0:03

[232] superiso[227] 80%

�2P2 D ARe
T .B !

K��C��/1�q2�6 GeV2

�0:66C0:24C0:04
�0:22�0:01

[232] superiso[227] 95%

�2P2 D ARe
T .B !

K��C��/14:18�q2�16 GeV2

1:00
C0:00C0:00
�0:05�0:02

[232] superiso[227] 45%

P0

4.B !
K��C��/1�q2�6 GeV2

0:58
C0:36
�0:32 ˙ 0:06 [233] superiso[227] 30%

P0

4.B !
K��C��/14:18�q2�16 GeV2

�0:18C0:70
�0:54 ˙ 0:08 [233] superiso[227] 35%

P0

5.B !
K��C��/1�q2�6 GeV2

0:21
C0:20
�0:21 ˙ 0:03 [233] superiso[227] 45%

P0

5.B !
K��C��/14:18�q2�16 GeV2

�0:79C0:20
�0:13 ˙ 0:18 [233] superiso[227] 60%

All experimental errors are 1� unless otherwise indicated. Column 4 shows the software package
that gives us the theoretical prediction. MZ is fit precisely to impose electroweak symmetry
breaking. To account for the inconsistencies in the inclusive and exclusive measurements of
jVubj and jVcbj, we perform a global �2 analysis using the inclusive and exclusive measurement
separately. We also perform an additional analysis where the error bars of jVubj and jVcbj cover
both the inclusive and exclusive values. In addition to the error bars indicated in the superiso
manual, we added an extra 15% error to B ! K��C�� observables because superiso does
not take into account the phases of soft terms

10.3.3 SUSY Non-decoupled Observables

B Physics Observables

Some of the measured angular observables of B ! K��C�� are in tension with
the SM prediction. For example, P0

4 in the high q2 bin (14:18 � q2 � 16GeV2) has
a 2:7� discrepancy with the SM prediction, P0

5 in the low q2 bin (1 � q2 � 6GeV2)
has a 2:5� discrepancy with the SM prediction, and P2 in the low q2 bin has a 2�
discrepancy with the SM prediction [232–234]. In addition, Altmannshofer et al.
[234] found the tension in P0

4 of the high q2 bin cannot be explained by the MSSM.
On the other hand, the tension of FL and P0

5 of the low q2 bin can be explained by
the MSSM by having a negative contribution to the C7 Wilson coefficient. In the
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Fig. 10.4 This plot shows the value of �2/d.o.f. as a function of m16 for cases where the value of
jVubj and jVcbj are taken to be the inclusive values, the exclusive values, or the average of inclusive
and exclusive values. Solid lines refers to the universal boundary condition, ˛ D 0, while dashed
lines refer to the mirage boundary condition with ˛ D 1:5. This plot shows that our model favors
the exclusive values of jVubj and jVcbj

standard model C7 � �0:32. The tension in FL and P0
5 can be further reduced by

making C7 more negative [234].
In the MSSM, chargino-stop loops and charged Higgs loop contribute to C7. The

C7 contribution from the charged Higgs is always negative. The charged Higgs of
our model has mass around 2TeV. So, the charged Higgs contribution to C7 is non-
negligible and is in the correct direction.

The chargino-stop loop contribution of CMSSM
7 has the following form [214]21

CMSSM
7 D �At tanˇ

m4Qt
sign.CSM

7 / : (10.34)

Since sign.�At/ is negative in our model, this term contributes to C7 in the wrong
direction. Hence, to reduce the contribution of this term, our model favors large
scalar masses.

21Note, the equation for the chargino contribution to CMSSM
7 given in Eq. (21), [234] apparently has

the wrong sign.
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From our global �2 analysis, we see that the calculated value of P0
4 in the

high q2 bin does not depend on m16, which is expected. In addition, the value of
P0
4 calculated in our model is in agreement with the SM. Hence, our results are

in agreement with Altmannshofer et al.’s claim that the tension in P0
4 cannot be

explained in the MSSM. As shown in Table 10.7, the tension of FL and P0
5 with the

experimental values decreases as m16 increases. This is again in agreement with our
expectation as explained above.

SUSY Corrections to the W Mass

On the other hand, the correction for MW is given by [235–237]

ıMW � MW

2

c2W
c2W � s2W

� (10.35)

and the 1-loop squark contribution is given by

�SUSY
1 D 3G�

8
p
2�2

Œ�s2Qt c
2
Qt F0.m

2
Qt1 ;m

2
Qt2 / � s2Qbc

2
QbF0.m

2
Qb1 ;m

2
Qb2 / (10.36)

C c2Qt c
2
QbF0.m

2
Qt1 ;m

2
Qb1 /C c2Qt s

2
QbF0.m

2
Qt1 ;m

2
Qb2 /

C s2Qt cQb2F0.m
2
Qt2 ;m

2
Qb1 /C s2Qt s

2
QbF0.m

2
Qt2 ;mQb22 /� (10.37)

where sW D sin �W ; cW D cos �W ; sQq D sin �Qq; cQq D cos �Qq, and

F0.x; y/ D x C y � 2xy

x � y
ln

x

y
: (10.38)

F0 has properties of F0.x; x/ D 0 and F0.x; 0/ D x. Hence, we see that when the
mass splitting of the squarks is large, the SUSY contribution to the 1-loop MW can
be significant. This is in agreement with our analysis which shows that the pull from
MW increases as the value of m16 increases above 20 TeV. Hence, SUSY corrections
to MW are significant and they can go in the right direction.

Light Higgs Mass

Fitting to the Higgs mass also constraints the value of m16. The dominant one-loop
contribution to the Higgs mass is given by

m2h � m2Z cos2 2ˇ C 3

.4�/2
m4t
v2

�
ln

M2
SUSY

m2t
C Xt

M2
SUSY

�
1 � X2t

12M2
SUSY

��
(10.39)
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Fig. 10.5 This figure shows the contribution to �2 as a function of m16 just from the set of
observables listed in Table 10.7. Fitting to the values of MW , Mh, and b-physics observables listed
in Table 10.7 helps explain why �2 is minimized at m16 � 25TeV

where Xt D At � �= tanˇ is the stop mixing parameter and M2
SUSY D mQt1 � mQt2 . In

our model, Xt < �p
6 MSUSY and the ratio Xt=MSUSY becomes less negative as m16

increases. Hence, as m16 increases, the Higgs mass also increases (see Fig. 10.2).
The pull in �2 due to Mh has a minimum around m16 D 25TeV.

Summary

Hence, the contributions of MW , Mh, and b-physics observables to �2, as listed in
Table 10.7, helps explain the shape of �2 as a function of m16 (see Fig. 10.5).

10.3.4 Bounds on MQg

To obtain a better picture for the favored value of gluino mass, we plotted two
contour plots of MQg vs. m16. One for the universal boundary condition ˛ D 0 and
another for the mirage boundary condition with ˛ D 1:5. The current lower bound
on MQg, for our model, is around 1:2TeV [167]. The contour plots are created by
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calculating �2/d.o.f. for 25 equally distributed values of m16 and M1=2, which gives
us 1TeV < MQg < 2TeV. We then use cubic interpolation to obtain the smooth
contours of �2/d.o.f.

In addition to the contour lines of the �2/d.o.f., we also plotted a 4� contour line.
From this, we see that for mirage boundary conditions MQg . 1:8TeV. However, for
universal boundary condition, the 4� MQg bound can be as high as 3TeV, which is
not shown in the figure.22 Hence, for mirage boundary conditions, we expect the 4�
bound on the gluino mass to be within reach in the next run of the LHC. As pointed
out by [167], the dominant decay mode of the gluino in the universal gaugino mass
boundary condition is t b Q��

1 . The remaining decay modes are t Nt Q�0i and b Nb �0i
for i D 1; 2. On the other hand, the dominant mode for gluino decay in the mirage
gaugino mass boundary condition is t b Q��

i for i D 1; 2. In all cases, the dominant
signature for gluinos in this model is given by b jets, leptons and missing ET [167].

10.3.5 Additional Predictions for Some Benchmark Points

The mass spectrum of the benchmark point of MQg � 1:2TeV and m16 D 25TeV
is shown in Table 10.8. From the �2 analysis, we see that the scalar masses are
predicted to be around 5TeV, while the first and second generation scalars have
mass around m16 � 25TeV. With scalars in this mass range, the stop in our model
does not completely decouple and can have non-negligible effects on flavor physics.
In addition, our light Higgs is SM-like with the heavy Higgs with mass around
2TeV.

In Table 10.8, we give the light sparticle masses, the CP violating angle for
neutrino oscillations, ı, the branching ratio BR.� ! e�/ and the electric dipole
moment of the electron for two different values of MQg and for ˛ D 0 and 1:5.
Note that, in general, the gauginos are the lightest sparticles. In addition, BR.� !
e�/ and the electric dipole moment of the electron are within reach of future
experiments.

10.3.6 Conclusion: SUSY on the Edge

We have analyzed a three family SO(10) SUSY GUT with Yukawa unification
for the third family. The model gives reasonable fits to fermion masses
and mixing angles, as well as many other low energy observables; see
Tables 10.9, 10.10, 10.11, 10.12 with some benchmark points of the global �2

analysis. A plot of �2 as a function of the parameter m16 is given in Fig. 10.4 or �2

contours in the two dimensional plane of MQg vs. m16 is given in Fig. 10.6.

22These bounds are consistent with our third family analysis.
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Table 10.8 Predictions with
m16 D 25TeV for MQg � 1:2

and 1:6TeV

m16 25 25 25 25

˛ 0 1.5 0 1.5

�2/d.o.f. 2.158 2.275 2.220 2.505

mQt1 4.903 5.011 4.909 5.249

mQt2 6.021 6.120 6.033 6.301

mQb1 5.989 6.088 6.455 6.606

mQb2 6.454 6.541 6.445 6.267

mQ	1 9.880 9.931 9.912 10.040

mQ	2 15.369 15.365 15.393 15.516

MQg 1.202 1.187 1.613 1.690

m
Q�01

0.203 0.551 0.279 0.900

m
Q�02

0.404 0.665 0.538 1.018

m
Q�

C

1
0.404 0.665 0.538 1.018

m
Q�

C

2
1.128 1.243 1.232 1.537

MA 2.194 2.082 2.477 3.352

sin ı �0.289 �0.482 �0.520 �0.576

BR.� ! e�/ � 1013 1.108 1.430 1.239 1.340

edme � 1030.e cm/ �1.403 �3.305 �1.763 �5.886

All masses in the table are in TeV units. Our prediction for the
branching ratio � ! e� is consistent with the current upper
bound of 5:7 � 10�13 [47]. In addition, our prediction of the
electron electric dipole moment is consistent with the current
upper bound of 10:5 � 10�28 e cm [47]

We performed an analysis with universal gaugino masses and with non-universal
gaugino mass with splitting determined by “mirage mediation” boundary conditions
described in Eq. (10.5). The parameter ˛ D 0 for universal gaugino masses and we
also take ˛ D 1:5 which is consistent with a well-tempered dark matter candidate
[238]. In both cases the model favors m16 � 25TeV. Nevertheless, due to RG
running [184], stops and sbottoms have mass of order 5TeV, while the first two
family scalar masses are of order m16. With m16 lying in this mass range, stops
in our model do not completely decouple from low energy flavor observables
(see Sect. 10.3.3). Best fits are found with a gluino mass less than 2 TeV. Our
gluinos decay predominantly into third generation quarks [167]. Moreover, in a
previous analysis [167] we showed that the dominant LHC signature for gluinos
in the model is given by b-Jets, leptons and missing ET . Note that, in general, the
gauginos are the lightest sparticles. The CP odd Higgs mass is of order 2 TeV, thus
the light Higgs couplings are very much Standard Model-like. In Table 10.8 we
present additional predictions. We give the predictions for the CP violating angle
for neutrino oscillations, ı, the branching ratio BR.� ! e�/ and the electric dipole
moment of the electron for two different values of MQg and for ˛ D 0 and 1:5.
In addition, BR.� ! e�/ and the electric dipole moment of the electron are within
reach of future experiments. Thus this theory is eminently testable!
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Table 10.9 Benchmark point with m16 D 25TeV;MQg D 1:202TeV; ˛ D 0:
.1=˛G;MG; �3/ D .25:98; 2:55 � 1016 GeV;�1:30%/
.�; ��; �; �Q�; ; ��0; ���/ D .0:6101; 0:0308; 1:1559; 0:0049; 0:0698;�0:0019; 0:0036/
.�� ; �Q�; �; ��/ D .0:52; 0:58; 3:95; 3:47/ rad
.m16;M1=2;A0; �.MZ// D .25000; 280;�51380; 1212/GeV
..mHd=m16/

2; .mHu=m16/
2; tanˇ/ D .1:86; 1:61; 50:29/

.MR1 ;MR2 ;MR3 / D .9:2; 578:8; 35054:2/ � 109 GeV

Observable Fit Exp. Pull �

MZ 91:1876 91:1876 0:0000 0:4541

MW 80:4784 80:3850 0:2320 0:4027

1=˛em 137:2810 0:0073 0:3569 0:6864

G� � 105 1:1789 1:1664 1:0598 0:0118

˛3.MZ/ 0:1192 0:1185 0:8199 0:0008

Mt 174:0947 173:2100 0:7171 1:2337

mb.mb/ 4:1986 4:1800 0:5092 0:0366

m	 1:7772 1:7768 0:0428 0:0089

Mb � Mc 3:1701 3:4500 0:8720 0:3209

mc.mc/ 1:2509 1:2750 0:9333 0:0258

ms.2GeV/ 0:0953 0:0950 0:0609 0:0050

md=ms.2GeV/ 0:0702 0:0513 2:8247 0:0067

1=Q2 0:0018 0:0019 0:4528 0:0001

M� 0:1056 0:1057 0:0578 0:0005

Me � 104 5:1143 5:1100 0:1674 0:0256

jVusj 0:2245 0:2253 0:5931 0:0014

jVcbj 0:0404 0:0408 0:1670 0:0021

jVubj � 103 3:1235 3:8500 0:8446 0:8601

jVtdj � 103 8:8463 8:4000 0:7418 0:6016

jVtsj 0:0396 0:0400 0:1508 0:0027

sin 2ˇ 0:6296 0:6820 2:7214 0:0193

�K 0:0022 0:0022 0:0022 0:0002

�MBs=�MBd 34:8195 35:0345 0:0308 6:9747

�MBd � 1013 3:9946 3:3370 0:8224 0:7996

m221 � 105 7:5883 7:5550 0:0621 0:5363

m231 � 103 2:4649 2:4620 0:0197 0:1455

sin2 �12 0:3028 0:3070 0:1125 0:0370

sin2 �23 0:6600 0:5125 1:1300 0:1305

sin2 �13 0:0162 0:0218 1:7510 0:0032

Mh 126:2697 125:7000 0:1882 3:0265

BR.B ! s�/ � 104 2:7220 3:4300 0:5419 1:3064

BR.Bs ! �C��/� 109 2:7213 2:8000 0:0888 0:8867

BR.Bd ! �C��/� 1010 1:0734 3:9000 1:7509 1:6143

BR.B ! 	�/� 105 6:2223 11:4000 1:3588 3:8104

BR.B ! K��C��/1�q2�6GeV2 � 108 4:7860 3:4000 0:2739 5:0610

(continued)
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Table 10.9 (continued)

Observable Fit Exp. Pull �

BR.B ! K��C��/14:18�q2�16GeV2 � 108 7:5495 5:6000 0:1356 14:3788

q20.AFB.B ! K��C��// 3:7120 4:9000 0:9190 1:2927

FL.B ! K��C��/1�q2�6GeV2 0:7207 0:6500 0:2101 0:3366

FL.B ! K��C��/14:18�q2�16GeV2 0:3108 0:3300 0:0726 0:2644

P2.B ! K��C��/1�q2�6GeV2 0:0331 0:3300 2:3939 0:1240

P2.B ! K��C��/14:18�q2�16GeV2 �0:4336 �0:5000 0:3364 0:1974

P0

4.B ! K��C��/1�q2�6GeV2 0:5717 0:5800 0:0208 0:3988

P0

4.B ! K��C��/14:18�q2�16GeV2 1:2190 �0:1800 1:7066 0:8198

P0

5.B ! K��C��/1�q2�6GeV2 �0:4335 0:2100 2:2451 0:2866

P0

5.B ! K��C��/14:18�q2�16GeV2 �0:7116 �0:7900 0:1552 0:5052

Total �2 46:7692

Table 10.10 Benchmark point with m16 D 25TeV;MQg D 1:187TeV; ˛ D 1:5:
.1=˛G;MG; �3/ D .25:95; 2:60 � 1016 GeV;�1:50%/
.�; ��; �; �Q�; ; ��0; ���/ D .0:6100; 0:0310; 1:1459; 0:0049; 0:0708;�0:0019; 0:0037/
.�� ; �Q�; �; ��/ D .0:53; 0:57; 3:94; 3:49/ rad
.m16;M1=2;A0; �.MZ// D .25000; 520;�51157; 1236/GeV
..mHd=m16/

2; .mHu=m16/
2; tanˇ/ D .1:85; 1:61; 50:19/

.MR1 ;MR2 ;MR3 / D .9:1; 567:0; 32370:5/ � 109 GeV

Observable Fit Exp. Pull �

MZ 91:1876 91:1876 0:0000 0:4540

MW 80:5197 80:3850 0:3344 0:4029

1=˛em 137:1416 0:0073 0:1540 0:6857

G� � 105 1:1829 1:1664 1:3978 0:0118

˛3.MZ/ 0:1189 0:1185 0:4798 0:0008

Mt 173:8449 173:2100 0:5150 1:2328

mb.mb/ 4:2023 4:1800 0:6094 0:0366

m	 1:7772 1:7768 0:0450 0:0089

Mb � Mc 3:1680 3:4500 0:8791 0:3207

mc.mc/ 1:2570 1:2750 0:6979 0:0258

ms.2GeV/ 0:0947 0:0950 0:0671 0:0050

md=ms.2GeV/ 0:0700 0:0513 2:7901 0:0067

1=Q2 0:0018 0:0019 0:5027 0:0001

M� 0:1056 0:1057 0:1457 0:0005

Me � 104 5:1145 5:1100 0:1775 0:0256

jVusj 0:2244 0:2253 0:6440 0:0014

jVcbj 0:0407 0:0408 0:0584 0:0021

jVubj � 103 3:1307 3:8500 0:8363 0:8601

jVtdj � 103 8:8596 8:4000 0:7639 0:6016

jVtsj 0:0398 0:0400 0:0652 0:0027

(continued)
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Table 10.10 (continued)

sin 2ˇ 0:6285 0:6820 2:7790 0:0193

�K 0:0023 0:0022 0:1149 0:0002

�MBs=�MBd 35:5946 35:0345 0:0786 7:1295

�MBd � 1013 3:9756 3:3370 0:8025 0:7958

m221 � 105 7:6111 7:5550 0:1046 0:5364

m231 � 103 2:4657 2:4620 0:0255 0:1455

sin2 �12 0:3134 0:3070 0:1724 0:0370

sin2 �23 0:6319 0:5125 0:9146 0:1305

sin2 �13 0:0153 0:0218 2:0337 0:0032

Mh 124:5455 125:7000 0:3814 3:0265

BR.B ! s�/ � 104 2:7270 3:4300 0:5372 1:3087

BR.Bs ! �C��/� 109 2:5215 2:8000 0:3228 0:8627

BR.Bd ! �C��/� 1010 1:0192 3:9000 1:7861 1:6129

BR.B ! 	�/� 105 6:2272 11:4000 1:3568 3:8124

BR.B ! K��C��/1�q2�6GeV2 � 108 4:8580 3:4000 0:2839 5:1361

BR.B ! K��C��/14:18�q2�16GeV2 � 108 7:6648 5:6000 0:1415 14:5975

q20.AFB.B ! K��C��// 3:7150 4:9000 0:9163 1:2933

FL.B ! K��C��/1�q2�6GeV2 0:7208 0:6500 0:2103 0:3366

FL.B ! K��C��/14:18�q2�16GeV2 0:3108 0:3300 0:0726 0:2644

P2.B ! K��C��/1�q2�6GeV2 0:0335 0:3300 2:3879 0:1242

P2.B ! K��C��/14:18�q2�16GeV2 �0:4336 �0:5000 0:3364 0:1974

P0

4.B ! K��C��/1�q2�6GeV2 0:5697 0:5800 0:0258 0:3985

P0

4.B ! K��C��/14:18�q2�16GeV2 1:2190 �0:1800 1:7066 0:8198

P0

5.B ! K��C��/1�q2�6GeV2 �0:4334 0:2100 2:2450 0:2866

P0

5.B ! K��C��/14:18�q2�16GeV2 �0:7117 �0:7900 0:1550 0:5052

Total �2 47:7692

Table 10.11 Benchmark point with m16 D 25TeV;MQg D 1:613TeV; ˛ D 0:
.1=˛G;MG; �3/ D .26:22; 2:32 � 1016 GeV;�0:65%/
.�; ��; �; �Q�; ; ��0; ���/ D .0:6096; 0:0311; 1:1398; 0:0049; 0:0710;�0:0019; 0:0038/
.�� ; �Q�; �; �� / D .0:53; 0:56; 3:95; 3:49/ rad
.m16;M1=2;A0; �.MZ// D .25; 450;�51341; 1226/GeV
..mHd=m16/

2; .mHu=m16/
2; tanˇ/ D .1:86; 1:61; 50:30/

.MR1 ;MR2 ;MR3 / D .9:1; 572:4; 32277:4/ � 109 GeV

Observable Fit Exp. Pull �

MZ 91:1876 91:1876 0:0000 0:4535

MW 80:4507 80:3850 0:1633 0:4025

1=˛em 137:7125 0:0073 0:9825 0:6886

G� � 105 1:1732 1:1664 0:5798 0:0117

˛3.MZ/ 0:1188 0:1185 0:4140 0:0008

(continued)
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Table 10.11 (continued)

Mt 174:1882 173:2100 0:7927 1:2340

mb.mb/ 4:1954 4:1800 0:4220 0:0366

m	 1:7781 1:7768 0:1417 0:0089

Mb � Mc 3:1568 3:4500 0:9175 0:3196

mc.mc/ 1:2595 1:2750 0:5993 0:0258

ms.2GeV/ 0:0939 0:0950 0:2147 0:0050

md=ms.2GeV/ 0:0701 0:0513 2:8052 0:0067

1=Q2 0:0018 0:0019 0:5139 0:0001

M� 0:1056 0:1057 0:1818 0:0005

Me � 104 5:1145 5:1100 0:1749 0:0256

jVusj 0:2244 0:2253 0:6763 0:0014

jVcbj 0:0404 0:0408 0:1729 0:0021

jVubj � 103 3:1033 3:8500 0:8681 0:8601

jVtdj � 103 8:8101 8:4000 0:6817 0:6016

jVtsj 0:0396 0:0400 0:1531 0:0027

sin 2ˇ 0:6270 0:6820 2:8562 0:0193

�K 0:0022 0:0022 0:2052 0:0002

�MBs=�MBd 35:3739 35:0345 0:0479 7:0854

�MBd � 1013 3:9433 3:3370 0:7681 0:7894

m221 � 105 7:6562 7:5550 0:1886 0:5364

m231 � 103 2:4631 2:4620 0:0077 0:1455

sin2 �12 0:3170 0:3070 0:2689 0:0370

sin2 �23 0:6264 0:5125 0:8722 0:1305

sin2 �13 0:0149 0:0218 2:1658 0:0032

Mh 124:5054 125:7000 0:3947 3:0265

BR.B ! s�/ � 104 2:6840 3:4300 0:5789 1:2887

BR.Bs ! �C��/� 109 3:0247 2:8000 0:2429 0:9252

BR.Bd ! �C��/� 1010 1:1022 3:9000 1:7323 1:6151

BR.B ! 	�/� 105 6:1884 11:4000 1:3727 3:7966

BR.B ! K��C��/1�q2�6GeV2 � 108 4:7640 3:4000 0:2707 5:0381

BR.B ! K��C��/14:18�q2�16GeV2 � 108 7:5110 5:6000 0:1336 14:3059

q20.AFB.B ! K��C��// 3:6690 4:9000 0:9579 1:2850

FL.B ! K��C��/1�q2�6GeV2 0:7225 0:6500 0:2149 0:3374

FL.B ! K��C��/14:18�q2�16GeV2 0:3108 0:3300 0:0726 0:2644

P2.B ! K��C��/1�q2�6GeV2 0:0228 0:3300 2:5196 0:1219

P2.B ! K��C��/14:18�q2�16GeV2 �0:4336 �0:5000 0:3364 0:1974

P0

4.B ! K��C��/1�q2�6GeV2 0:5820 0:5800 0:0050 0:4001

P0

4.B ! K��C��/14:18�q2�16GeV2 1:2190 �0:1800 1:7066 0:8198

P0

5.B ! K��C��/1�q2�6GeV2 �0:4455 0:2100 2:2578 0:2903

P0

5.B ! K��C��/14:18�q2�16GeV2 �0:7116 �0:7900 0:1552 0:5052

Total �2 48:8413
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Table 10.12 Benchmark point with m16 D 25TeV;MQg D 1:690TeV; ˛ D 1:5:
.1=˛G;MG; �3/ D .26:38; 2:09 � 1016 GeV; 0:02%/
.�; ��; �; �Q�; ; ��0; ���/ D .0:6096; 0:0311; 1:1384; 0:0049; 0:0708;�0:0019; 0:0037/
.�� ; �Q�; �; �� / D .0:52; 0:56; 3:96; 3:49/ rad
.m16;M1=2;A0; �.MZ// D .25; 900;�50846; 1529/GeV
..mHd=m16/

2; .mHu=m16/
2; tanˇ/ D .1:86; 1:60; 50:31/

.MR1 ;MR2 ;MR3 / D .9:1; 579:0; 32367:3/ � 109 GeV

Observable Fit Exp. Pull �

MZ 91:1876 91:1876 0:0000 0:4540

MW 80:4655 80:3850 0:2000 0:4026

1=˛em 137:7323 0:0073 1:0111 0:6887

G� � 105 1:1740 1:1664 0:6469 0:0117

˛3.MZ/ 0:1188 0:1185 0:2979 0:0008

Mt 174:3427 173:2100 0:9175 1:2345

mb.mb/ 4:2001 4:1800 0:5479 0:0366

m	 1:7774 1:7768 0:0644 0:0089

Mb � Mc 3:1659 3:4500 0:8863 0:3205

mc.mc/ 1:2574 1:2750 0:6825 0:0258

ms.2GeV/ 0:0936 0:0950 0:2741 0:0050

md=ms.2GeV/ 0:0701 0:0513 2:8082 0:0067

1=Q2 0:0018 0:0019 0:5170 0:0001

M� 0:1056 0:1057 0:1571 0:0005

Me � 104 5:1139 5:1100 0:1545 0:0256

jVusj 0:2244 0:2253 0:6688 0:0014

jVcbj 0:0400 0:0408 0:3609 0:0021

jVubj � 103 3:0662 3:8500 0:9113 0:8601

jVtdj � 103 8:7156 8:4000 0:5247 0:6016

jVtsj 0:0392 0:0400 0:2960 0:0027

sin 2ˇ 0:6259 0:6820 2:9122 0:0193

�K 0:0022 0:0022 0:0834 0:0002

�MBs=�MBd 34:7964 35:0345 0:0342 6:9701

�MBd � 1013 3:8958 3:3370 0:7165 0:7799

m221 � 105 7:6614 7:5550 0:1984 0:5364

m231 � 103 2:4606 2:4620 0:0094 0:1455

sin2 �12 0:3197 0:3070 0:3423 0:0370

sin2 �23 0:6197 0:5125 0:8210 0:1305

sin2 �13 0:0146 0:0218 2:2520 0:0032

Mh 122:0502 125:7000 1:2059 3:0265

BR.B ! s�/ � 104 2:6310 3:4300 0:6321 1:2640

BR.Bs ! �C��/� 109 3:5145 2:8000 0:7203 0:9920

BR.Bd ! �C��/� 1010 1:0522 3:9000 1:7647 1:6138

(continued)
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Table 10.12 (continued)

BR.B ! 	�/� 105 6:1009 11:4000 1:4090 3:7610

BR.B ! K��C��/1�q2�6GeV2 � 108 4:6780 3:4000 0:2583 4:9484

BR.B ! K��C��/14:18�q2�16GeV2 � 108 7:4066 5:6000 0:1281 14:1080

q20.AFB.B ! K��C��// 3:6290 4:9000 0:9946 1:2779

FL.B ! K��C��/1�q2�6GeV2 0:7240 0:6500 0:2189 0:3380

FL.B ! K��C��/14:18�q2�16GeV2 0:3108 0:3300 0:0726 0:2644

P2.B ! K��C��/1�q2�6GeV2 0:0132 0:3300 2:6254 0:1207

P2.B ! K��C��/14:18�q2�16GeV2 �0:4337 �0:5000 0:3358 0:1975

P0

4.B ! K��C��/1�q2�6GeV2 0:5918 0:5800 0:0294 0:4014

P0

4.B ! K��C��/14:18�q2�16GeV2 1:2190 �0:1800 1:7066 0:8198

P0

5.B ! K��C��/1�q2�6GeV2 �0:4562 0:2100 2:2685 0:2937

P0

5.B ! K��C��/14:18�q2�16GeV2 �0:7117 �0:7900 0:1550 0:5052

Total �2 52:6056

Finally, with the large value of m16 � 25TeV we expect the gravitino mass
to be at least this large. Perhaps it is large enough to avoid a cosmological
gravitino problem [239]. In addition, moduli may also be suitably heavy to avoid
a cosmological moduli problem [240–243]. Hence the scalar masses are clearly in
an intermediate range, i.e. too heavy to be “natural,” But lighter than “Split SUSY.”
We thus are positioned on the border between these two limiting cases, i.e. this is
“SUSY on the Edge.”

10.4 The Group D3 and Its Representations

In Sect. 10.3 we considered the SO.10/ model with a D3 family symmetry. In this
chapter we derive the representations and product rules for this family symmetry. All
possible rotations in three dimensions which leave an equilateral triangle invariant
form the group D3 (see Fig.,10.7) (for more information see the Appendix of [216]).
This group contains six elements in three classes23:

EI C3; C
2
3I Ca; Cb; Cc;

where E is the identity element, C3 is the rotation through 2�=3 about the axis
perpendicular to the paper and going through the center of the triangle, C23 is C3

23An element b of the group G is said to be conjugate to the element a if there is an element u in
G such that uau�1 D b. A group can be separated into classes of elements which are conjugate to
one another.
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Fig. 10.6 These plots show the contour of �2/d.o.f. as a function of the MQg and m16. The 4� bound
is also included in the plot. For ˛ D 1:5, the upper bound is within reach of the next run of LHC.
In addition, we also see that our model favors m16 � 25TeV
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Fig. 10.7 Symmetry axes of
an equilateral triangle

c

a b

C3

Table 10.13 The character
table for the group D3

D3 E C3 Ca

1A 1 1 1

1B 1 1 �1
2A 2 �1 0

applied twice, Ca is the rotation through� about the axis a, and similarly Cb and Cc.
Note that Cb is the same as CaC3 and Cc is the same as CaC23 . The number of classes
in a finite group is equal to the number of nonequivalent irreducible representations
of the group. One of the most interesting results of the theory of finite groups is
the relation between the number of elements g of a group and dimensions n� of its
nonequivalent irreducible representations �,

X
�

n2� D g:

Thus we find that the group D3 has two nonequivalent one dimensional represen-
tations 1A, 1B and one two dimensional representation 2A. Each representation is
described by the set of characters24 �1; : : : ; �� , where � is the number of classes in
the group. The character table for the group D3 is given in Table 10.13.

From the character table it is possible to find the decomposition of the product of
any two representations:

1A ˝ 1A D 1A; 1A ˝ 1B D 1B; 1B ˝ 1B D 1A; (10.40)

1A ˝ 2A D 2A; 1B ˝ 2A D 2A; (10.41)

2A ˝ 2A D 1A ˚ 1B ˚ 2A: (10.42)

24The character of an element a of the group G in a given representation D is the trace
P

i Dii.a/.
Therefore elements in the same class (conjugate elements) have the same character.
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To construct an explicit model obeying D3 symmetry we need to specify the
representation and determine invariant tensors. One dimensional representations
coincide with the characters and the two dimensional representation can be chosen
to be:

D.E/ D
�
1 0

0 1

�
; D.C3/ D

�
� 0

0 ��1
�
; D.Ca/ D

�
0 1

1 0

�
; (10.43)

where � D e2� i=3.
Now it is straightforward to find the two singlets and the doublet in the

decomposition of a product of two doublets (10.42). Writing  D fx; yg and
 0 D fx0; y0g, we find:

 ˝  0 j1A D xy0 C yx0 ; (10.44)

 ˝  0 j1B D xy0 � yx0 ; (10.45)

 ˝  0 j2 D
�
yy0
xx0
�
: (10.46)

The decomposition (10.42) also reveals that the product of three doublets
contains an invariant. Taking  00 D fx00; y00g, this invariant is:

 ˝  0 ˝  00 j1A D xx0x00 C yy0y00 : (10.47)

Finally, we want to show that given a doublet a in D3, there is a unique invariant
norm given by  �

a  a �  �
1  1 C  �

2  2. Clearly, this norm is D3 invariant since
under a D3 transformation  0

a D Cab b with C 	 D3 and C�C D 1. That this is
unique follows from the fact that in the product of two doublets there is a unique
invariant given in Eq. (10.44). In addition, defining a new doublet by �a D gab �

b

satisfying �0
a D Cab�b D . �

b /
0gTba D  �

c C
�
cbg

T
ba requires for consistency g D

CgCT . The unique solution to this consistency condition is g D
�
0 1

1 0

�
. Then we

have �˝  j1A �  �
a  a.



Chapter 11
Baryogenesis, Cosmological Moduli
and Gravitino Problems, and Dark Matter

Supersymmetric theories have many applications to the early universe and cosmol-
ogy. The Lightest Supersymmetric Particle, in a theory with R parity, is absolutely
stable and can make an excellent dark matter candidate. In addition, cosmology
places significant constraints on some superparticle masses. In particular, the
gravitino mass and moduli (we will explain what they are in a moment) are
constrained. Finally in a SUSY GUT, baryogenesis is typically accomplished via
a process known as leptogenesis. SUSY GUTs, when spontaneously broken to the
SM gauge group, typically create magnetic monopoles. There are serious constraints
on the present magnetic monopole density. Most of these issues will be discussed in
this chapter.

An inflationary early universe was proposed to solve the cosmological flatness
and homogeneity problems. It was also offered as a solution to the magnetic
monopole problem. Monopoles are generically produced via the Kibble mechanism
when one spontaneously breaks SU.5/ or SO.10/ to the SM gauge group. Assume
however one goes through the GUT phase transition prior to inflation, then the
monopole density which was produced is diluted during inflation. Then, as long
as the reheat temperature is less than the GUT scale, the monopoles are never re-
created. Recent results on the polarization of the microwave background suggest
that the energy density during inflation was of order a GUT scale. In this case
we may have two, not so independent, sectors of the theory, i.e. the Higgs sector
responsible for GUT symmetry breaking and the inflaton sector responsible for
inflation. Assuming that the energy scale during inflation is of order the GUT scale,
then as the universe cools both effects will happen simultaneously. The universe
will inflate and at the same time go through the GUT symmetry breaking. Thus
any monopoles which may be produced will be diluted by inflation. Clearly the
monopole problem is naturally solved in this case.

After inflation the universe reheats and produces a thermal population of
particles with mass less than the reheat temperature and interaction rates which are
large enough to quickly push these particles into a state of chemical and kinetic
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equilibrium. This last caveat applies particularly to particles with weak interactions
whose rate is suppressed by powers of m�1

Z . Gravitinos, on the other hand, interact
with rates suppressed by m�1

Pl . This means that upon reheating the abundance of
gravitinos is sensitive to the precise reheat temperature. Moduli are scalar fields
defined by flat directions in the potential. Such fields typically are consequences
in many string models, but they were first introduced in supergravity models.
Consider the Polonyi field, X, with scalar potential determined by the superpotential,
Eq. (7.13), and Kähler potential, Eq. (7.14). The Polonyi field couples to matter
only through gravitationally suppressed interactions, which is a common feature
of moduli. Again, assuming inflation, the abundance of moduli depends sensitively
on the reheat temperature. If the reheat temperature is large enough they can both
appear with a thermal abundance.

We now argue that a thermal abundance of either gravitinos or moduli can cause
cosmological problems, unless their mass is suitably constrained.

Brief Review of Standard “Big Bang” Cosmology [244, 245]

Using units such that „ D c D kB D 1 we define the Planck scale, MPl � G�1=2
N D

1:9 � 1019 GeV, and the reduced Planck scale mPl � MPlp
8�

D 2:4 � 1018 GeV.
We assume space-time is described, on large scales, by the Friedmann–

Robertson–Walker metric

ds2 D �dt2 C a2.t/

�
dr2

1 � kr2
C r2d˝2

�
(11.1)

where d˝2 � d�2Csin2 �d�2, and the parameter, k, determines the spatial topology
of the universe: k D C1, closed; k D 0, open and flat; k D �1, open and curved.
a.t/ is the cosmological scale parameter. Recall that the FRW metric is uniquely
determined by requiring space to be both homogeneous and isotropic. Note that
this is the way it appears today on large scales and it can be explained by an early
inflationary epoch.

The dynamical equations of cosmology are given by:
Einstein’s equation

G�� D 1

m2Pl
T��; T�� I� D 0; (11.2)
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with Pa � da
dt ; P � d

dt implies

H2.t/ �



Pa
a

�2 D 

3m2Pl
� k

a2
; (11.3)

Ra
a

� �.C 3p/=.6m2Pl/;

P � �3.C p/ H;

where

T�� � . C p/u�u� C pg��; (11.4)

u� � dx�

d	
D .1;

�!
0 /: (11.5)

; p is the energy, pressure densities, respectively, for a perfect fluid, u� is the
fluid velocity field 4-vector, and H.t/ is the Hubble expansion rate. Note,  and p
is the total energy and pressure which is a sum of many components. The geodesic
equations of motion for a particle (or fluid element) is given by

du�

d	
C � �

��u
�u� D 0: (11.6)

In fact, the FRW coordinate position, r; �; � in Eq. (11.1) describes a coordinate
frame which is co-moving with the fluid elements. The distance between two such
elements is then increasing with the scale factor a.t/.

The dynamical equations, Eq. (11.3), must be supplemented with an equation of
state, p D p./. We consider three forms:

1. radiation;

pr D 1

3
r; (11.7)

[using (11.3) implies]

r � 1

a4
:

2. non-interacting conserved massive particles, i.e. matter;

pm D 0; (11.8)

[using (11.3) implies]

m � 1

a3
:
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3. cosmological constant;

p� D ��: (11.9)

[using (11.3) implies]

� D constant:

The cosmological constant� is typically defined by

� � �

m2Pl
: (11.10)

We now have a complete system of equations, Eqs. (11.3), (11.7)–(11.9).
Let us now discuss some observed properties of the present universe which shall

be useful later.

1. The present value of the Hubble expansion parameter using Planck data, Table 4
in [246] at 68% CL (TT + low P + lensing)

H0 D h 100 km=s=Mpc; (11.11)

with h D 0:6781˙ 0:0092 (1 pc = 3.26 light years, 1 Mpc � 3 � 1024 cm). H0
determines the observed red shift, z D �observed��emitted

�emitted



D a.t0/

a.te/
� 1

�
, of distant

stars using the relation

d D H�1
0

�
z C 1

2
.1 � q0/z

2 C O.z3/

�
; (11.12)

where d is the present distance to the star and q0 is the present value of the

deceleration parameter, q0 D �
h

Ra a
Pa2 jtoday

i
' .1C 3p=/=2.

2. We define the critical energy density

c.t/ � 3 H2.t/ m2Pl: (11.13)

Using Eq. (11.3) we see that for



8<
:
>

D
<

9=
; c; k D

8<
:
1

0

�1

9=
; : (11.14)
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Hence we find today

0c ' 2 � 10�29 g/cm3h2 ' .3 � 10�3 eV/4h2: (11.15)

3. The observed energy density in 2:7K black body radiation is

0r D 4:5 � 10�34 g/cm3: (11.16)

Cosmologists typically define the ratio, for matter of type i,

˝i � i

c
: (11.17)

Thus

˝0
r D 2:25 � 10�5h�2: (11.18)

For luminous matter (baryons) we have [Table 4 in [246] at 68% CL (TT + low
P + lensing)]

˝0
bh
2 D 0:02226˙ 0:00023: (11.19)

However, the dominant form of energy in the universe is not luminous [again
see Table 4 in [246] at 68% CL (TT + low P + lensing)]. It is divided into a dark
matter component with

˝0
m D 0:308˙ 0:012; (11.20)

and a dark energy component with

˝0
� D 0:692˙ 0:012: (11.21)

In addition, the universe appears to be flat with ˝k ' 0. Hence,
P

i˝i D 1.
Note, ˝� < 1 implies the observed cosmological constant � satisfies � <

10�120m2Pl. This is the cosmological constant problem.
4. The ratio of the number of baryons to photons is given by

nb
n�

j0 ' 10�9 (11.22)

where n0� ' 400 cm�3 and n0b ' 0b=1GeV.
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Relevant Statistical Mechanics

For a particle in thermal equilibrium, the phase space density f .�!p / is given by

f .�!p / � dN

d3�!p d3�!x D 1

.2�/3
1

exp.E��
T /C �

(11.23)

where

� D
� C1 fermions

�1 bosons

	
; (11.24)

E D
q�!p 2 C m2, T is the temperature and � is the chemical potential.

The number density n and energy density  are then given by

n D Nh
R
d3�!p f .�!p / (11.25)

 D Nh
R
d3�!p E.�!p / f .�!p / � nhEi;

where hEi denotes the thermal average and Nh is the number of helicity states. For
T  m, we obtain the number and energy density appropriate for “radiation”

nr D g0 �.3/ T3

�2
; (11.26)

r D g �2

30
T4

where g0 D NhB C 3
4
NhF; g D NhB C 7

8
NhF are weighted sums of boson (NhB)

and fermion (NhF) helicities, and �.3/ D P3
iD1 i�3 � 1:2. Note, that the thermal

averaged photon energy is

hE�i ' 2:6 T; (11.27)

and the entropy density is given by

Sr D g
2�2

45
T3: (11.28)

For T 
 m we have the number and energy densities for non-relativistic “matter”
with � D 0

nm D Nh .
mT
2�
/3=2 e�m=T (11.29)

m D m nm C 3
2
nm T; pm D nm T;

where pm is the pressure density.
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Comparing Eqs. (11.7) and (11.26) we see that

T � 1

a
(11.30)

for radiation in thermal equilibrium. For pressureless matter, out of chemical
equilibrium, we have nm / 1=a3. However, for matter in thermal equilibrium, nm
is Boltzmann suppressed (/ e�m=T ) and thus decreases much faster than 1=a3. It
is not always possible though for the reaction rates, which govern the approach
to equilibrium, to keep up with the expansion and thus as result the system goes
out of chemical equilibrium. Let us now briefly discuss the approach to thermal
equilibrium.

Consider two species of particles, x (which is out of thermal equilibrium), and
r (in thermal equilibrium). We want to know how x approaches equilibrium [247].
The relativistic version of Boltzmann’s equation is given by

dnx
dt

C 3
Pa
a
nx D �x

r1r2
Œ fr1 fr2 .1 � �x fx/ jM .r1 r2 ! x/j2 (11.31)

�fx .1 � �r1 fr1 / .1 � �r2 fr2/ jM .x ! r1 r2/j2�
C2�34

12 Œ fr1 fr2 .1 � �xfx3 / .1 � �xfx4 / jM .r1 r2 ! x3 x4/j2
�fx1 fx2 .1 � �r3 fr3/ .1 � �r4 fr4 / jM .x1 x2 ! r3 r4/j2�;

where the Lorentz invariant phase space factor � is defined by

�b1b2
a1a2 D Nha1

d3pa1
.2�/32Ea1

Nha2

d3pa2
.2�/32Ea2

Nhb1

d3pb1
.2�/32Eb1

Nhb2

d3pb2
.2�/32Eb2

.2�/4

ı4.
X
i

pai �
X
i

pbi/; (11.32)

�r;x is defined in Eq. (11.24) and M is the scattering amplitude for the indicated
process. The four terms in Eq. (11.31) represent the four processes in Fig. 11.1,
respectively. If we assume that the interactions are both CP and CPT invariant,
use the fact that fr is an equilibrium distribution and assume that the gas is non-
degenerate, we obtain

dnx
dt

C 3
Pa
a
nx D .neqx � nx/ h�x!r1 r2i (11.33)

C2 Œ.neqx /2 � .nx/2� h�xx!rr vi:

neqx is the thermal equilibrium number density. Note, that equilibrium is achieved
IFF H D Pa

a 
 h� i or h� vi, i.e. the expansion rate is less than a typical reaction
rate. Otherwise we find nx � 1=a3, as in Eq. (11.8).
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Fig. 11.1 Scattering processes affecting thermal equilibration

We now have the tools to review the standard picture of the early universe. In
Table 11.1 we have listed the major events. We assume that all particles are in
thermal equilibrium at the Planck temperature. As the universe expands it goes
through several phase transitions. There is assumed to be an inflationary phase. The
latest results from the Bicep2-Keck-Planck re-analysis [248] of CMB polarization
data suggest that the energy density during the inflationary epoch was of order the
GUT scale. Typically during this transition the universe cools adiabatically and then
reheats to a temperature, Treheat. At this point we reset our clocks and start the
thermal history anew. We won’t discuss the inflationary model.1 Suffice it to say
that it must solve the cosmological problems of homogeneity, isotropy, flatness and
the monopole problem of GUTs (for monopoles in GUTs, see for example [251]).

1A possible model of inflation with the gauge symmetry breaking scale determining the energy
density during inflation is given in [249, 250].
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Table 11.1 Thermal history of the Universe

Time (s) T (GeV) Comments

10�44 1019 “Initial conditions” assume all
particles in thermal
equilibrium

10�38 1016 GUT scale/inflation

Reheat ) reset clocks

10�28 1011 Fundamental SUSY breaking
scale (gravity mediation)

10�18 106 Fundamental SUSY breaking
scale (low energy gauge
mediation)

10�10 102 Electroweak breaking scale
(g 
 100)

10�5 1=3 QCD phase transition from
quark-gluon plasma to hadrons

10�2 10�2 �� decouple : h�vn��i < H
nn

nnCnp
W 1=2 ! 1=6 W

e�.mn�mp/=T

2� 10�3 �e decouple : h�vni < H

4 1=2 � 10�3 eC e� annihilate : e�me=T

.4.7=8/ C 2/T3� D 2 T3�
(entropy conservation)
) T� D .4=11/1=3 T�

100 10�4 “Big Bang” Nucleosynthesis

1012 D 3� 104 years 10�9 ˝0
m=˝

0
r T0 	 3:18 � 10�9 h2 T D Teq : universe becomes

matter dominated

1=3� 10�9 T = Trecombination : p C e !
neutral hydrogen and photons
decouple

By the time the universe gets down to a temperature of order 100 MeV, particles
with mass greater than this temperature are severely Boltzmann suppressed or are
out of equilibrium. At about 100 MeV, muons begin to annihilate [252]. Neutrinos
will soon decouple, leaving an asymptotic ratio of neutrons to neutrons plus protons
of about 1/6. This is the initial ratio for the subsequent process of helium synthesis
(at the temperature of THe � 0:1MeV) where all the remaining neutrons are
incorporated into helium nuclei. During this epoch, also known as nucleosynthesis,
we have the following processes occurring, (p C n $ d C � I d C d $ H3

e C n $
H3 C pI H3 C d $ H4

e C n) where d denotes deuterium. At the end, all free
neutrons are depleted into H4

e . Thus at the end of this epoch the thermal bath
includes, fp; H4

e ; d; �; �; eg with a ratio of d=H4
e � 10�5. Then at a temperature

T � 1=2MeV, electrons annihilate and heat up the photons but not the neutrinos,
since they have already decoupled. Using entropy conservation we find that the
neutrinos are colder than the photons with T� D . 4

11
/1=3 T� .
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Under the standard thermal history of the universe, throughout the epoch from
TPl to Teq � .˝0

m=˝
0
r / T0 � 3:18 h2 eV � 1:46 eV [i.e. at time teq when

r.teq/ D m.teq/], the universe is radiation dominated (i.e. the first 3 � 104 years).
Thereafter the energy density is matter dominated. At about T � 1=3 eV, free
protons and electrons combine to form neutral hydrogen. This is the so-called
recombination temperature. Once this occurs, photons decouple. These photons
continue to red-shift for the next � 1010 years. They are presently observed as the
Cosmic Microwave Background radiation with T0 � 2:7K.

11.1 Baryogenesis via Leptogenesis

The observed universe has more baryonic matter than anti-baryonic matter. In SUSY
GUTs, baryon number minus lepton number,B�L, is conserved, but separately both
B and L are violated at the GUT scale. If we assume that, at the Planck temperature,
we have nB D nL D 0, i.e. an equal number of baryons and anti-baryons and
leptons and anti-leptons, then we have for all time nB � nL D 0. What ingredients
are necessary in order to generate a non-vanishing net baryon asymmetry? This
was discussed many years ago by Sakharov [253]. One needs to violate baryon
number and both C and CP and to do it while out of thermal equilibrium. Because
in thermal equilibrium CPT guarantees that for every baryon there is an anti-baryon
and baryon number and lepton number violation will always drive the system to
thermal equilibrium with nB D nL D 0.

It was first suggested that the X and Y gauge bosons, when they decay out
of the thermal bath, could generate the non-vanishing baryon number, since
their interactions violate both B and L separately (yet conserving B � L), and
non-vanishing phases in the CKM matrix elements violate CP. They go out of
equilibrium when T � MX , assuming �.X;Y/ < H. When T > MX their number
density is of order T3. However, when T < MX their equilibrium number density
is Boltzmann suppressed and the decay rate cannot keep up with the equilibrium
number density which is going to zero exponentially as (e�Mx=T ). Hence when they
decay they quickly go out of chemical equilibrium.

Note however, that the electroweak theory also violates both B and L, preserving
B�L via sphaleron interactions [254, 255]. These �.BCL/ interactions occur at a rate
which typically satisfies �.BCL/ > H. They thus drive any non-vanishing nB D nL
(due to X; Y decay) to zero [256]. Thus in order to generate a non-vanishing
baryon number one needs to violate B � L and, hence, generate a non-vanishing
nB ¤ nL [257, 258]. This is possible in a SUSY GUT with large Majorana masses
for sterile neutrinos. When the heavy sterile neutrinos, responsible for the See-
Saw mechanism which generates three light active neutrinos, decay out of thermal
equilibrium, they can violate C, CP and L (since they are Majorana neutrinos). The
necessary conditions to obtain the observed ratio nb=n� was given in a nice review
article [259]. Their analysis assumes thermal leptogenesis and requires the lightest
Majorana neutrino with mass, MN1 of order 1010 GeV and a reheat temperature
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Fig. 11.2 Decay amplitudes for the lightest Majorana neutrino, N1, which lead to non-zero � due
to phases in the Yukawa matrices

above MN1 . CP violation occurs when the Majorana neutrino decays and the lepton
number asymmetry produced per decay is given in terms of the Dirac Yukawa
matrices coupling the heavy right-handed sterile neutrino to the lepton and Higgs
weak doublets. These Yukawa matrices typically have non-vanishing phases which
lead to a CP asymmetry of the form (see Fig. 11.2)

�1 D �N1!l Hu � �N1!l� H�

u

�N1!l Hu C �N1!l� H�

u

(11.34)

They find

�1 ' 3

16�

1

.Y� Y
�
� /11

X
iD2;3

ImŒ.Y� Y
�
� /
2
1i�

MN1

MNi

: (11.35)

This is the simplest scenario. It neglects the heavier Majorana neutrinos which
might also generate a lepton number asymmetry, depending on the value of the
reheat temperature. It also does not describe the possible non-thermal leptogenesis.
But this is more model dependent. Unfortunately, without a model, there is no
direct connection between the sign of the CP violation in the heavy Majorana sector
and CP violation which might be observable for the light active neutrinos. On the
positive side, however, given a SUSY GUT which fits low energy fermion masses
and mixing angles (including neutrinos), it also has the possibility for predicting the
observed baryon to photon ratio.

11.2 Bounds on Masses of Gravitationally Coupled Particles

11.2.1 Mass Bounds for a Heavy Gravitino: No Inflation

Let us first assume that gravitinos are the heaviest supersymmetric particle in a
SUSY GUT. The scattering rate for gravitinos with the thermal bath at temperature
T is generically given by

h� v ni � ˛NT3=m2Pl (11.36)
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Fig. 11.3 Gravitinos can come back into thermal equilibrium scattering off other SUSY (or non-
SUSY) particles in the thermal bath. The number density of gravitinos after reheating depends on
the reheat temperature. These two graphs just represent two of all the possible permutations

(see Fig. 11.3) where ˛ � 10�2 is of order the electromagnetic coupling strength,
and N is the number of particles in the thermal bath. Gravitinos decouple from the
thermal bath when the interaction rate becomes less than of order the expansion rate
of the universe, i.e. when

˛NT3decoupling=m
2
Pl � h� v ni . H � .g�2=90/1=2T2decoupling=mPl (11.37)

or with g � N � 102 we have

Tdecoupling . mPl: (11.38)

Thus any period of inflation below the Planck temperature will dilute the gravitino
number density so much so that you might expect that there are almost no gravitinos
left today. However, that is not quite correct, since once the universe reheats after
inflation, gravitinos can be produced by the same thermal scattering processes.

In order to better understand what is going on and to set up the problem, we first
discuss bounds on a heavy gravitino, neglecting inflation [239]. The dimension-five
operator coupling the helicity ˙3=2 components of the gravitino2 to a vector boson

2The gravitino is described by a Rarita-Schwinger spin 3/2 field, QG�.
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A� and its gaugino partner � is

.1=4mPl/ N�a���� QG�Fa
� C h:c:; (11.39)

and the dimension-five operator coupling the helicity ˙3=2 components of the
gravitino to a chiral scalar �i and its fermionic partner  iL is

.1=2mPl/ QG���@���i�� iL C h:c:: (11.40)

Since the gravitino coupling is Planck suppressed, the lifetime is long. The gravitino
can decay into all SUSY particles consistent with energy conservation. The gravitino
decay rate is of order3

� QG � N

2�

m33=2
m2Pl

(11.41)

where N is the number of SUSY states lighter than m3=2. And its lifetime is of order

	 QG D 1=� QG � 4 � 105 .100GeV

m3=2
/3s: (11.42)

Assuming gravitinos were in thermal equilibrium when they decoupled, their

number density is given by the radiation number density n QG D 3 �.3/ T3

2�2
with

T � mPl. Therefore the ratio of the number of gravitinos to photons is Y QG D 3=4.
This ratio is preserved to low temperature.4 Finally gravitinos decay out of the
system when H . � QG. Note, however, that at temperatures below the gravitino
mass, the universe becomes matter dominated and remains matter dominated until
gravitinos decay out of the system. Therefore we have

� QG D N

2�

m33=2
m2Pl

D
s

m3=2 �.3/ T3decay
2�2m2Pl

(11.43)

or

Tdecay '
 
N

s
1

2 �.3/

m5=23=2
mPl

!2=3
� 20


 m3=2
100GeV

�5=3
eV: (11.44)

3This is given simply by dimensional analysis.
4This is not quite true since every time some particles annihilate out of the thermal bath, photons
get heated up while the gravitinos don’t.
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When gravitinos decay out of the system all their energy is converted into radiation.
The universe then reheats to a temperature, Treheat given by energy conservation, i.e.

 QG.Tdecay/ D m3=2 3 �.3/ T3decay
2�2

D g�2T4reheat
30

D rad.Treheat/ (11.45)

or

� QG D N

2�

m33=2
m2Pl

D
s

g�2T4reheat
90 m2Pl

: (11.46)

We obtain

Treheat D
s
� QG mPl.

90

g�2
/1=2 � 1:4


 m3=2
100GeV

�3=2
keV: (11.47)

This is below the temperature of order 1–10 MeV when nucleosynthesis begins with
the “correct” neutron to proton ratio determined by the expansion rate. But now the
universe expands too quickly and the analysis of nucleosynthesis fails. This is a
major problem. The solution is that gravitinos have mass

m3=2 � 30 TeV; (11.48)

implying a reheat temperature of order 7 MeV. Of course, the actual bound depends
on the details. Note, however, with m3=2 � 30TeV there is a huge amount of entropy
released when gravitinos decay. We have� D . TreheatTdecay

/3 � 2�104. This will severely
dilute the baryon number density.

11.2.2 Mass Bounds for a Heavy Gravitino: Assuming
Inflation

Now we can address the issue of inflation. Assume that at about a temperature
of order the GUT scale, the universe goes through a period of inflation. Then the
primordial gravitinos will dilute away. After inflation the universe reheats. Then we
must calculate the gravitino number density produced at the reheat temperature. If
Y QG D n QG

n�
is small enough, such that when gravitinos decay they no longer dominate

the energy density of the universe, there won’t be a problem with nucleosynthesis.

This occurs when m3=2Y QG . 10MeV or Y QG . 10�4


100GeV
m3=2

�
:

Unfortunately, this is not sufficient to solve all the problems with late decaying
gravitinos. When they decay (after nucleosynthesis), their decay products have lots
of energy. In particular, energetic hadrons and photons can disrupt the deuterium
produced during nucleosynthesis, since the deuterium binding energy is quite small,
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of order 2.3 MeV. This gives a strong bound on the reheat temperature [260].
However the most stringent bound comes from the photo-disintegration of 4He
via processes such as � C4 He ! n C3 He and � C4 He ! p C3 H (with
3H !3 He C e C N�e) which then overproduces deuterium and 3He. This bound
requires [261]

Y QG < 6:1 � 10�14 .m3=2=100GeV/�1 (11.49)

and a reheat temperature,

TMAX � Treheat < 2:5 � 108 .m3=2=100GeV/�1 GeV: (11.50)

This result is obtained in [260] by using the Boltzmann equation

dn QG
dt

' h˙totvi .2 �.3/
�2

T3/2 (11.51)

with h˙totvi D P
ij �

tot
ij v

g0

i g
0

j

4
D m�2

Pl .15:59 g
2
3C5:25 g22C1:65 g02/where fi; jg are

all possible initial states and g0
i D .NhB/i C 3

4
.NhF/i. The total number g of degrees

of freedom in the MSSM is g D P
B NhB C 7

8

P
F NhF D 122.1C 7

8
/ D 915

4
.5 Using

t D
r

90 m2Pl
4 �2 g

=T2, we have

dn QG
dT

' �2h˙totvi .2�.3/=�2/2 . 90

4 �2 g
/1=2 mPl T

3 (11.52)

which gives

n QG.TMAX/ � h˙totvi .2�.3/=�2/2 . 90

16 �2 g
/1=2 mPl T

4
MAX (11.53)

where the integral is dominated by temperatures of order TMAX . As temperatures
decrease the gravitino number density then decreases and at low temperatures we
have

n QG.T QG/ � h˙totvi .2�.3/=�2/2 . 90

16 �2 g
/1=2 mPl TMAXT

3
QG: (11.54)

Plugging in the values for ˛i.TMAX/ given in [260], they obtain

n QG.T QG/ � 3:35 � 10�12 .TMAX=10
9 GeV/ .1 � 0:018 ln.TMAX=10

9 GeV// T3QG:
(11.55)

5This result neglects the right-handed neutrinos needed for the See-Saw mechanism. But assuming
they are heavy, they can safely be ignored.
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This gives

Y QG � .2�.3/=�2/�1 3:35�10�12 .TMAX=10
9 GeV/ .1�0:018 ln.TMAX=10

9 GeV//.
T QG

T�
/3

(11.56)

where T QG D .172=10065/1=3T� takes into account the difference in the photon
temperature and the gravitino temperature after many particles have gone out of
equilibrium. With TMAX � 2:5 � 106 GeV, we have Y QG � 6 � 10�16 where we have
assumed that the gravitino is the heaviest superparticle with m3=2 D 10TeV.

The most recent analysis on bounds on the gravitino mass coming from
cosmology are found in [262], based on the previous work in [263, 264]. This paper
treats four different benchmark points in the CMSSM (see Table 11.2). It turns out,
however, that the upper bound on the reheat temperature for very heavy gravitinos is
more or less independent of the case. In most cases, for a gravitino with mass greater
than about 40 TeV, the upper bound on the reheat temperature is about 1010 GeV (see
Fig. 11.4 for Case 3).

Table 11.2 These are the
parameters for the four cases
studied in [262]

Case 1 Case 2 Case 3 Case 4

m1=2 300 GeV 600 GeV 300 GeV 1200 GeV

m0 141 GeV 218 GeV 2397 GeV 800 GeV

A0 0 0 0 0

tanˇ 30 30 30 45

� 389 GeV 726 GeV 231 GeV �1315 GeV

m
Q�01

117 GeV 244 GeV 116 GeV 509 GeV

˝
.thermal/
LSP h2 0.111 0.110 0.106 0.111

Fig. 11.4 The upper bound
on the gravitino mass, m3=2,
as a function of the reheat
temperature, TR. The figure is
taken from [262] for Case 3.
The solid line denotes the
upper bound on the reheat
temperature from the closure
limit due to the LSP.
Reprinted Fig. 4 with
permission from Masahiro
Kawasaki, Phys. Rev. D, 78,
065011-6 (2008). Copyright
(2008) by the American
Physical Society
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11.2.3 Mass Bounds for a Light Gravitino

We now consider the mass bounds on a gravitino LSP where we find a relation in
the m3=2 vs. Treheat plane [265, 266]. In local supersymmetry the Goldstino becomes
the longitudinal component of the gravitino, giving the gravitino a mass

m3=2 D Fp
3mPl

D 2:4

�
F

.100 TeV/2

�
eV: (11.57)

For low energy SUSY breaking, the gravitino is the LSP and the lightest standard
model superparticle is then the NLSP, and can decay into its partner and the
gravitino. The lowest order coupling of the Goldstino is fixed by the supersymmetric
Goldberger-Treiman low energy theorem to be given by [265, 267, 268]

L � � 1
F

j˛�@� G˛ C h:c: (11.58)

where j˛� is the supercurrent and G˛ is the spin 1/2 longitudinal Goldstino compo-
nent of the gravitino. The decay to the Goldstino component is then suppressed only
by F rather than mPl. In the case that the NLSP is mostly Bino, QB, the coupling leads
to a transition magnetic dipole moment between the NLSP and gravitino [269],

cos �W.mQB=2
p
2F/ QB N���� G F�� C h:c: (11.59)

producing a decay rate

� . QB ! G C �/ D cos2 �Wm5QB
16 � F2

: (11.60)

Since it is not suppressed by mPl the light Goldstino can remain in equilibrium to
much lower temperatures. Using the Goldberger-Treiman type relation for gravitino
scattering on matter, Pagels and Primack find a scattering cross-section relation
[265]

�G � v � � M Ethreshold

F2
D 10�37 cm2 .

Ethreshold

100GeV
/ .
1TeV2

F
/2 (11.61)

assuming the lightest superparticle mass of order 100 GeV, M is the typical target
mass and they take the effective number of states in the thermal bath when
Goldstinos decouple, gG � 100. The helicity ˙3=2 states of the gravitino interact
with gravitational strength and thus they go out of thermal equilibrium at the Planck
scale.

Again, in order to set up the problem, let’s assume inflation at a GUT scale
and discuss the bound on the gravitino mass, neglecting reheating. The spin ˙3=2
components of the gravitino decouple at a temperature of order MPl, but the spin
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˙1=2 components of the gravitino stay in thermal equilibrium to much lower
temperatures. The Goldstino decay constant F determines the gravitino mass and
now we show that the gravitino mass has an upper bound such that gravitinos do
not overclose the universe today. Recall that presently, photons in the CMB have

a temperature T0 ' 2:7K and a number density n0� D 2�.3/ T0
3

�2
' 400=cm3.

Neutrinos, on the other hand, are colder with a temperature T0� D .4=11/1=3 T0� as
a consequence of decoupling prior to electrons and positrons annihilating out of the
thermal bath. This heated up the photons without affecting the neutrinos. Similarly,
after gravitinos decouple from the thermal bath many more particles annihilate.
Thus the effective Goldstino temperature satisfies

gG T0G
3 D 3 � 2 � 7

8
T0�

3 C 2 T0�
3 D 43

11
T0�

3
(11.62)

and the Goldstino number density is given by

n0G D 3

4

43

11

1

gG
n0� : (11.63)

Requiring that the energy density in Goldstinos is less than or equal the dark matter
density, we have

m3=2 n
0
G � ˝m 

0
c (11.64)

implies

m3=2 � ˝m

˝�

gG
3
4
43
11

2:6T0: (11.65)

or

m3=2 � 0:3

2:25 � 10�5 h�2
gG
3
4
43
11

6 � 10�4 eV ' 1:25 gG eV: (11.66)

Assuming for the moment gG . 200 we have

m3=2 � 250 eV: (11.67)

This also puts an upper bound on the scale of SUSY breaking. We have

F D p
3 m3=2 mPl � .103

gG
200

TeV/2: (11.68)
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For self-consistency, let’s calculate the decoupling temperature for Goldstinos.
Using Eq. (11.61), Goldstinos decouple when

�G � v nr D �G � v.g
0
G�.3/T

3
decoupling

�2
/ . H.Tdecoupling/ D

vuutgG �
2

30
T4decoupling
3m2Pl

(11.69)

or

Tdecoupling � .

p
gG �3

g0
G �.3/

p
90
/

1

�G � vmPl
D .

p
gG �3

g0
G �.3/

p
90
/

1

�G � vmPl
: (11.70)

Using the bound, Eq. (11.68), we find

Tdecoupling � 320GeV: (11.71)

At this temperature, the number of particles in thermal equilibrium includes at least
all SM particles, giving gG D 2�45�7=8C2�12C4D 106:75 degrees of freedom
which is more or less consistent with the value we have chosen, i.e. gG � g0

G D 200.
Let us now take into account the effects of reheating after inflation. The authors

of [266] use the Boltzmann equations

dn QG
dt

C 3Hn QG D h˙tot v i n2rad C
X
i

nih�ii (11.72)

(taking into account the scattering of gauginos and gauge bosons in the thermal
bath) where h˙tot v i D 1

24�m23=2 m2Pl
.26:0 g23 M2

3 C 9:16 g22 M2
2 C 2:44 g21 M2

1/

and fni; �ig are the number density and decay rate of the ith superparticle.
Requiring 0G � 0c the authors of [266] obtain the following upper bound on
the Goldstino mass as a function of the reheat temperature (see Fig. 11.5). The
upper bound on the gravitino mass, given by the dotted region in Fig. 11.5, is
excluded. The exact value depends on the assumed value of the NLSP mass.
The bound obtained is m3=2 < 3:4 GeV .9:3GeV; 288:5GeV; 771:5GeV/ for
mNLSP D 50GeV .100GeV; 500GeV; 1TeV/.

The most recent paper on the bound on the mass of a gravitino LSP is also given
in [262]. The bounds are expressed as a simultaneous constraint on the gravitino
mass and NLSP mass. In all cases a light gravitino is allowed. Only in the case of a
sneutrino NLSP is a heavier gravitino allowed (see Figs. 11.6, 11.7 and 11.8).
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Fig. 11.5 The upper bound on the gravitino mass, m3=2, as a function of the reheat temperature,
TR, after inflation; assuming the light gravitino LSP doesn’t overclose the universe. The figure is
taken from [266]. They took all the squark and slepton masses to be 1 TeV, gaugino masses and
the NLSP mass = 50 GeV and GUT relations on the gaugino masses are assumed. The solid line
denotes the upper bound on the reheating temperature from the closure limit. The dotted region is
excluded from the arguments of the light element photo-destruction if the NLSP has a relic density
as large as mNLSP YNLSP D 5 � 10�11 GeV and is assumed to decay radiatively with a lifetime
shorter than 5:3� 106 s. Reprinted from Phys. Lett. B303, 289 (1993), T. Moroi, H. Murayama and
Masahiro Yamaguchi, “Cosmological constraints on the light stable gravitino,” Fig. 1, Page 292,
Copyright (1993), with permission from Elsevier

Fig. 11.6 The upper bound on the gravitino mass, m3=2, as a function of the lightest bino mass.
Reprinted Fig. 7 with permission from Masahiro Kawasaki, Phys. Rev. D, 78, 065011-8 (2008).
Copyright (2008) by the American Physical Society



11.2 Bounds on Masses of Gravitationally Coupled Particles 145

Fig. 11.7 The upper bound
on the gravitino mass, m3=2,
as a function of the lightest
stau mass. Reprinted Fig. 12
with permission from
Masahiro Kawasaki, Phys.
Rev. D, 78, 065011-10 (2008).
Copyright (2008) by the
American Physical Society

Fig. 11.8 The upper bound
on the gravitino mass, m3=2,
as a function of the lightest
sneutrino mass. Reprinted
Fig. 15 with permission from
Masahiro Kawasaki, Phys.
Rev. D, 78, 065011-12 (2008).
Copyright (2008) by the
American Physical Society

11.2.4 Cosmological Moduli Problem

Finally we consider the cosmological moduli problem [240–242, 270, 271]. For a
recent review, see [272]. Supergravity and string models tend to have many scalar
fields with relatively flat potentials and couplings to visible matter suppressed by
the Planck scale. Such scalar fields are called moduli and they cause problems in the
early universe. Let’s consider the discussion first given in [240]. The simple Polonyi
model for supersymmetry breaking in supergravity leads to a cosmological problem.
Given the Polonyi superpotential, Eq. (7.13), and Kähler potential, Eq. (7.14), we
obtain the zero temperature scalar potential, V0.X/, Eq. (4.11). However in the early
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universe we must consider the finite temperature free energy

VT. QX/ D V0. QX/C V1. QX/ (11.73)

with QX D Re.X/=mPl given by

V0. QX/ D �4 exp. QX2/ Œ1 � 3 ˇ20 C .ˇ20 � 1/ QX2 C 2ˇ0. QX2 � 2/ QX C QX4� (11.74)

V1. QX/ D � 1

90�2
g.T/ T4 C 1

24
T2 .Tr.M2

S/C 1

2
Tr.M2

F/C 3Tr.M2
V // (11.75)

CŒ �
2

.4�/2
� .Tr.M2

S/ � Tr.M2
F/C 3Tr.M2

V //C O.M4/:

where QX0 D p
3 � 1, ˇ0 D ˇ=mPl D 2 � p

3, and � D p
mmPl � 1010 GeV [see

Eq. (7.13)]. Given the values of MS; MF (MV is independent of QX) the free energy is

VT. QX/ D V0. QX/C .� C �0.T2//ŒV0. QX/C �4 exp. QX2/ .ˇ0 C QX/2� (11.76)

where � D Œ
2.g�1/
4�2

��2=m2Pl and �0 D 2
24
.g � 1/ T2=m2Pl.

The minimum of the zero temperature (one loop corrected) potential is shifted to
[273]

h QXiTD0 D p
3.� � 1/C O.1 � �/2 (11.77)

where � D 1 � Œ
g�1
3.4�/2

� �2=m2Pl and ˇ0 is renormalized such that the energy at the

minimum is zero. We have ˇ0 D .2�p
3/ �CO.1��/2. In the same approximation,

the finite temperature minimum of the free energy is given by

h QXiT D h QXiTD0 � 1

24
.g � 1/ T2=m2Pl: (11.78)

And the energy in the potential is given by

VT.h QXiT/ D 23 �4 exp. QX2/ 1
24
.g � 1/ T2=m2Pl: (11.79)

It is thus reasonable to expect that the initial value of the Polonyi field at
temperatures of order MPl is shifted away from its zero temperature minimum by
an amount of order MPl.

The Polonyi field X has mass mX ' �2=mPl, and a decay rate into MSSM matter,
�X ' m3X=m

2
pl. Hence, like the gravitino, the Polonyi field (and generically all

moduli) is long lived. Assuming the universe goes through a period of inflation
at temperatures of order the GUT scale, the Polonyi field will typically obtain an
additional contribution to the scalar potential proportional to H2

inf X2 which will
have the effect of moving the Polonyi field further away from its zero temperature
minimum.
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The evolution of the Polonyi field and radiation in the early universe is
determined by the equations6

PX C 3 H PX2 D ��X PX2 (11.80)

Pr C 4 H r D C�X PX2

H2 D X C r

3 m2Pl
:

During the inflationary epoch, we have H  �X and the Polonyi field is over-
damped and loses little energy. After reheating and at temperatures of order � the
Polonyi field begins to oscillate about its zero temperature minimum. At this point
the kinetic and potential energy in the Polonyi field are approximately equal, and
thus the Polonyi field acts like matter with zero pressure. At a temperature T � �

the energy density in the Polonyi field is of order X � � T3 and it dominates the
energy density of the universe. Then at a much lower temperature,

Tdecay � .3 m2Pl �
2
X =�/

1=3; (11.81)

the Polonyi field decays and the universe reheats to a temperature, Treheat satisfying
energy conservation, i.e.

X.Tdecay/ D r.Treheat/: (11.82)

We have

Treheat D .g.Treheat/�
2=30/�1=4.3 m2Pl � 2

X /
1=4: (11.83)

The entropy produced when the Polonyi field decays is huge. We have

� D .
Treheat
Tdecay

/3 � .
�4

3 m2Pl�
2
X

/1=4: (11.84)

Now let’s put in some numbers. Given mX D p
3m3=2 and with m3=2 D 100GeV

we find mX D 173GeV. Then �x D 9 � 10�31. m3=2
100GeV/

3 GeV. We have

Treheat � 3 m3=2 .
m3=2
mPl

/1=2 � 2 keV .
m3=2

100GeV
/3=2 (11.85)

and

� � mPl

33=4m3=2
� 1016 .

100GeV

m3=2
/: (11.86)

6See problem 9.
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This is a problem unless Treheat � 7MeV, i.e. temperatures above the nucleosynthe-
sis scale, which requires

mX � 40TeV; m3=2 � 23TeV: (11.87)

Therefore we see that a simultaneous solution to the gravitino problem (with
heavy gravitinos) and the moduli problem is obtained with

m3=2 � 40TeV: (11.88)

Note, while inflation can ameliorate the gravitino problem, it is unlikely to resolve
the moduli problem. In addition, the baryon asymmetry will be diluted when the
universe reheats. This is another serious problem requiring a solution.

11.2.5 Summary

The gravitino problem (with heavy gravitinos) can be solved by inflation, however
the reheat temperature after inflation must be less than about 1010 GeV for heavy
gravitinos with mass greater than 40TeV. For gravitino LSPs, the reheat temperature
after inflation is again less than 108–109 GeV. Both cases require baryogenesis
to occur at temperatures below the reheat temperature. Finally, the cosmological
moduli problem and the heavy gravitino problem are solved with moduli and
gravitino masses greater than �40TeV, without inflation. But in either case, a great
deal of entropy is released at very low temperatures which would invariably dilute
the primordial baryon asymmetry. This is a serious problem. There are now several
possible solutions.

1. All moduli obtain supersymmetric masses at a high scale. It has been shown that
moduli stabilization at a high energy scale with supersymmetry breaking can
solve the cosmological moduli problem [274]. It has also been suggested that a
nilpotent Polonyi field can solve the cosmological Polonyi problem [275]. Thus
we can have baryogenesis via leptogenesis after inflation. We would first attempt
incorporating a solution such as this. However, these may not be sufficient to
solve the generic cosmological moduli problem of string theories which typically
have many moduli.7

2. Moduli are driven to the minimum of their potentials during inflation, i.e. so-
called moduli trapping at points of enhanced symmetry [270, 277–280]. This
may work with certain moduli, but it is unlikely to work for the dilaton in string
theory. To solve this problem, we revert to solution (1). Such a solution may also
be consistent with a GUT scale leptogenesis scenario.

7In particular Heterotic string models with a discrete ZR
4 symmetry it has been argued that most of

the moduli may be stabilized in supersymmetric vacua with string scale masses [276].
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In the latter two cases, low temperature baryogenesis mechanisms must be incorpo-
rated.

3. Thermal inflation above the weak scale (diluting moduli) followed by baryogen-
esis [281].

4. Moduli dominate the energy density during BBN, then decay and reheat above
10 MeV. Then it is possible to have baryogenesis via moduli decay [282].

See [272] for a recent discussion of this issue.

11.3 Dark Matter

The Standard Model of Cosmology �CDM includes about 23% by mass of some
form of cold dark matter [246]. This component of the energy budget of the universe
is necessary to explain the light to mass ratio of galactic clusters; the velocity curves
of spiral galaxies or even the Baryon Acoustic Oscillations which are observed in
the cosmic microwave background data (for a recent review, see [283] or the book
by Baumann and McAllister [245]). Supersymmetric theories provide an abundance
of possible dark matter candidates. If the theory has an R parity, then the lightest
supersymmetric particle [LSP] is stable. Dark matter should be electromagnetically
neutral. The possible LSP candidates of the MSSM include the lightest neutralino or
the gravitino. In extensions of the MSSM, such as those which solve the strong CP
problem via a Peccei-Quinn symmetry and an invisible axion, some combination of
the axion and/or axino can also be dark matter.

In the former case, it was found that a well tempered dark matter candidate,
i.e. part bino, wino, Higgsino can be consistent with Planck data (see [284]).
Moreover, it was shown that well-tempered dark matter is obtainable with “mirage-
mediation” boundary conditions [196]. In the latter case a detailed review of axino
cold dark matter can be found in [285]. Also see [286, 287] for recent work on mixed
axion/neutralino dark matter.

There are many on-going searches for dark matter, including direct searches in
underground detectors; indirect searches looking for the annihilation products of
dark matter particles in the galaxy or the production of dark matter particles in
collider experiments. There are also specialized experiments searching for axionic
dark matter. To date there has not been any observation.



Chapter 12
The Little Hierarchy Problem or Fine-Tuning

Supersymmetric theories were invoked to solve the gauge hierarchy problem, i.e.
to explain why the weak scale is so much smaller than the Planck or GUT
scales. It does this by extending the chiral symmetry of fermions to their bosonic
superpartners. Without supersymmetry one must fine-tune the Higgs mass squared
by one part in 1028. But the question in the literature is how much fine-tuning is
acceptable. The answer to this question is clearly subjective. Is one part in 100 too
much or is one part in 1000 acceptable? Either way, the fine-tuning to 1 part in 1028

is avoided.
But the real question, which is of paramount importance to everyone, is whether

or not supersymmetry can be discovered at the LHC. If all SUSY particles
were much heavier than 10–100 TeV, their discovery is very unlikely with the
present machine. With all of this said, I also believe it would be very important
to find versions of SUSY which exhibit minimal fine-tuning; as long as they
remain aesthetic. For example, it has been argued that the General Non-Minimal
Supersymmetric Standard Model [GNMSSM] [288] has fine-tuning to less than 1
part in 20. In this section, let me focus on the fine-tuning found in the predictive
SO.10/model with Yukawa unification [146].

Consider the standard definition of fine-tuning. The question which is asked is
how sensitive are low energy observables, in particular the Z mass, to variations of
the fundamental parameters in the theory. As a warm up, prior to discussing fine-
tuning in SUSY, let’s ask how much fine-tuning is present in the Standard Model.
For example, it is well known that the nucleon mass is determined dynamically via
strong QCD interactions. In particular, the quarks obtain dynamical masses of order
the renormalization group invariant QCD scale, �QCD � 300MeV. The nucleon
mass is of order 3 ��QCD, while the  meson mass is about 2 ��QCD. One should
note that the proton mass is determined to be much smaller than the Planck scale
due to the logarithmic running of the strong coupling constant and it is accepted that

© Springer International Publishing AG 2017
S. Raby, Supersymmetric Grand Unified Theories, Lecture Notes in Physics 939,
DOI 10.1007/978-3-319-55255-2_12

151



152 12 The Little Hierarchy Problem or Fine-Tuning

the proton is “naturally” lighter than the Planck scale. We have

�QCD D exp.�8�2=b3g23/MPl (12.1)

where �QCD is evaluated at one loop. It determines the dynamical quark mass and
hence the proton mass. We can define the fine-tuning parameter1

� D @ log�2
QCD

@ log g23
D 2

g23
�QCD

@�QCD

@g23
(12.2)

D 2
g23

�QCD
.�QCD

C8�2
b3g43

/ D 16�2

b3g23
' 4�

b0˛3.MPl/
� 100:

So perhaps we should conclude that fine-tuning to one part in 100 is natural.
We studied the fine-tuning of our SO.10/ model using the fine-tuning measure

introduced by Ellis et al. [289], and studied in detail by Barbieri and Giudice [290],

�BG D max�ai ; �ai D
ˇ̌
ˇ̌@ lnM2

Z

@ ln a2i

ˇ̌
ˇ̌ ; (12.3)

where ais are input parameters of the model. This fine-tuning measure calculates
the sensitivity of MZ due to a small variation of the input parameters defined at the
GUT scale.

Electroweak symmetry is broken radiatively in our model. From radiative
electroweak symmetry breaking, the CP-odd Higgs mass, mA, and the �-term are
calculated at one-loop [188]. This calculation requires the physical Z pole mass, MZ .
Hence, in our model, MZ is fit precisely. To make sure that radiative electroweak
symmetry breaking is consistent, mA and � are calculated iteratively until they
converge.

On the other hand, when we calculate fine-tuning using Eq. (12.3), we use the
benchmark points. The benchmark points are the inputs that produce minimum �2

value for the respective values of m16 and M1=2. Hence, at each benchmark point,
radiative electroweak symmetry breaking is consistent. Thus, instead of fixing MZ

and calculating mA and � iteratively, we then use the value of mA and � to calculate
a new value of MZ given new input parameters. We then compare this value of MZ

to the exact value to obtain the fine tuning parameter�BG.
The input parameters that we vary are ai D f�;M1=2;m16;mHu ;mHd ;A0g. The

results of our calculations are summarized in Table 12.1. From Table 12.1, we
see that if there are no constraints on the input parameters (first five rows), then
the fine-tuning is about 1 part in 105. However, if the GUT scale parameters are
constrained such that mHu;d=m16 � p

2 and A0=m16 � �2, then the fine-tuning of
our theory is reduced to about 1 part in 700 for m16 D 25TeV. What does this mean?

1We use Eq. (5.44) with ˛3.MZ/ D 0:1, b0 D 7 and MG replaced by MPl.
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Table 12.1 Without fixing any ratios, the fine-tuning is 1 part in 105

m16
Varying parameters 10 TeV 15 TeV 20 TeV 25 TeV 30 TeV

Fine-tuning of benchmark points with ˛ D 0 and MQg � 1:2TeV

� 140 190 210 360 490

M1=2 260 340 400 430 450

m16 12;000 27;000 47;000 74;000 110;000

mHd 760 1500 3900 6100 8700

mHu 10;000 23;000 40;000 62;000 89;000

A0 9300 21;000 39;000 61;000 85;000

m16 with A0=m16 fixed 22;000 49;000 87;000 130;000 190;000

m16 with mHu ;d=m16 fixed 9500 22;000 40;000 62;000 86;000

m16 with mHu;d=m16;A0=m16 fixed 240 400 630 740 850

Fine-tuning of benchmark points with ˛ D 1:5 and MQg � 1:2TeV

� 110 240 290 340 380

M1=2 320 420 500 560 580

m16 12;000 28;000 48;000 74;000 110;000

mHd 750 1500 4600 6000 8500

mHu 10;000 23;000 39;000 62;000 89;000

A0 9200 21;000 39;000 60;000 86;000

m16 with A0=m16 fixed 22;000 49;000 87;000 130;000 190;000

m16 with mHu ;d=m16 fixed 9600 21;000 39;000 61;000 87;000

m16 with mHu;d=m16;A0=m16 fixed 330 450 670 890 1100

When the ratio of mHu;d=m16 and A0=m16 are fixed, the fine-tuning according to Eq. (12.3) is about
1 part in 700 for m16 D 25TeV. Hence, from naturalness, we can infer that these ratios should be
fixed in a more fundamental theory. In addition, fine-tuning increases as m16 increases. Hence in
our model, as might be expected, smaller m16 is favored by naturalness

This suggests that, in a more fundamental and natural theory, the ratio of m16 with
mHu;d and A0 could be fixed by constrained boundary conditions at the fundamental
scale. Hence, one should combine these quantities before calculating fine-tuning. In
Sect. 24.3.2 we consider how such special boundary conditions may be obtained in
a string context.

Summary

We evaluated the amount of high scale fine-tuning of our model. In general we find
fine-tuning of order 1 part in 105. However we note that with particular boundary
conditions at the GUT scale (when the ratio of m16 to A0 and mHu;d are fixed at
A0=m16 � �2 and mHu;d=m16 � p

2) the fine-tuning is reduced to 1 part in 700
for m16 D 25TeV. We do not have a fundamental theory that gives these two ratios
naturally. Nevertheless, in such a fundamental theory the amount of fine-tuning is
reduced considerably.



Chapter 13
Problems of 4D GUTs

There are two aesthetic (perhaps more fundamental) problems concerning 4D
GUTs. They have to do with the complicated sectors necessary for GUT symmetry
breaking and Higgs doublet-triplet splitting. These sectors are sufficiently compli-
cated that it is difficult to imagine that they may be derived from a more fundamental
theory, such as string theory. In fact, in the heterotic string it is well-known that the
largest chiral matter representation in either SU.5/ or SO.10/, which is massless
in 4D, is the adjoint representation. Moreover for SO.10/ there are no examples of
semi-realistic models with a massless adjoint. Why should you care about string
theory? Because it is the only known possible extension of the Standard Model
which includes quantum gravity. In order to resolve these difficulties, it becomes
natural to discuss grand unified theories in higher spatial dimensions. These are
the so-called orbifold GUT theories discussed in the next section. They have their
own problems, i.e. they are non-renormalizable theories requiring an infinite number
of higher dimensional counter terms. In later chapters we shall discuss ways of
embedding orbifold GUTs into the Heterotic string.

Consider, for example, one of the simplest constructions in SO.10/ which
accomplishes both tasks of GUT symmetry breaking and Higgs doublet-triplet
splitting [149]. Let there be a single adjoint field, A, and two pairs of spinors,
C C C and C0 C C

0
. The complete Higgs superpotential is assumed to have the

form [148, 149]

W D WA C WACC0 C .HAH0 C SH02/: (13.1)
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The precise form of WA does not matter, as long as WA gives hAi the Dimopoulos-
Wilczek form. WACC0 makes the VEVs of C and C point in the SU.5/-singlet
direction. The last term is the Higgs doublet-triplet splitting sector. The crucial term
that couples the spinor and adjoint sectors together has the form

WACC0 D C

�
a1
M�

Z A C b1
M�

C NC C c1S

�
NC0CC0

�
a2
M�

Z A C b2
M�

C NC C c2S

�
NC

(13.2)

where Z and S are singlets. The critical point is that the VEVs of the primed spinor
fields will vanish, and therefore the terms in Eq. (13.2) will not make a destabilizing
contribution to �F�

A D @W=@A. This is the essence of the mechanism.
In SU.5/ the construction which gives natural Higgs doublet-triplet splitting

requires the SU.5/ representations 75; 50; 50 and a superpotential of the form
[73, 97]

W � 753 C M752 C 5H 75 50C N5H 75 50C 50 50 X: (13.3)

Summary

SUSY GUTs in 4 space-time dimensions require both complicated GUT symmetry
breaking sectors and Doublet-Triplet Higgs splitting. These sectors are unlikely to
be derivable from string theory. Moreover, the solution to both problems are greatly
simplified in string constructions. As a first step to string constructions, we consider
SUSY GUTs in extra spatial dimensions in the next chapter, i.e. so called “Orbifold
GUTs.”



Chapter 14
Orbifold GUTs

14.1 GUTs on a Circle

Let us briefly review the geometric picture of GUT models compactified on a circle
S1. The circle S1 � R1=T where T is the action of translations by 2�R. All fields
˚ are thus periodic functions of the fifth dimension x5 D y with

˚.x�; y/ ! ˚.x�; y C 2�R/ D ˚.x�; y/ (14.1)

(see Fig. 14.1).
As the first example of an orbifold GUT consider a toy model, i.e. a pure SO.3/

gauge theory in five dimensions [291]. The gauge field is

AM � Aa
M Ta; a D 1; 2; 3I M;N D f0; 1; 2; 3; 5g: (14.2)

The gauge field strength is given by

FMN � Fa
MN Ta D @MAN � @NAM C iŒAM;AN � (14.3)

where Ta are SO.3/ generators. The Lagrangian is

L5 D � 1

4g25k
Tr.FMNF

MN/ (14.4)

and we have Tr.Ta Tb/ � kıab. The inverse gauge coupling squared has mass
dimensions one.

Let us first compactify the theory on M4 � S1 with coordinates fx�; yg and y D
Œ0; 2�R/. The theory is invariant under the local gauge transformation

AM.x�; y/ ! U AM.x�; y/ U
� � iU @M U�; U D exp.i�a.x�; y/ Ta/: (14.5)
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–4πR –2πR 2πR0 4πR

Fig. 14.1 The real line modded out by the space group of translations, T

Consider the possibility @5A� � 0. We have

F�5 D @�A5 C iŒA�;A5� � D� A5: (14.6)

We can then define

Q̊ � A5

p
2�R

g5
� A5=g (14.7)

where g5 � p
2�R g and g is the dimensionless 4D gauge coupling. The 5D

Lagrangian reduces to the Lagrangian for a 4D SO.3/ gauge theory with massless
scalar matter in the adjoint representation, i.e.

L5 D 1

2�R
Œ� 1

4g2k
Tr.F��F

��/C 1

2k
Tr.D� Q̊ D� Q̊ /�: (14.8)

This resembles the Georgi-Glashow model [292] of an SO.3/ gauge theory
interacting with an isovector Higgs field. There are two differences, however. First,
there is no potential V. Q̊ / D �. Q̊ a Q̊ a �V2/2 for the Higgs field which would break
the gauge symmetry down to U.1/ and second, the Higgs field depends on the 5th
coordinate.1 Although this analysis is limited to gauge fields satisfying @5A� D 0,
it nevertheless inspires the following discussion of symmetry breaking via Wilson
loops. In general, however, @5A� ¤ 0 and we need to keep the full Tr.F2�5/ term.

We can always choose a gauge such that @MAM D 0. In this gauge the free
field equations of motion are given by @M@MAN D 0. In general we have the mode
expansion

AM.x�; y/ D
X
n

ŒanM cos n
y

R
C bnM sin n

y

R
� (14.9)

where only the cosine modes with n D 0 have zero mass. Otherwise the 5D
Laplacian @M@M D @�@

� C @y@
y leads to Kaluza-Klein [KK] modes with effective

4D mass

m2n D n2

R2
: (14.10)

1In [291] we constructed ’t Hooft–Polyakov monopole strings in the 5D orbifold GUT theory.
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Quantizing Non-Abelian Gauge Theories

Consider the five dimensional action of a pure SU.N/ gauge theory

Sgauge D � 1

2g25

Z
d5xTr

�
FMNF

MN
�

(14.11)

with normalization Tr.TaTb/ D 1
2
ıab and gauge covariant derivative DM D @M C

iAM . Note, the gauge field strength is defined by FMN D @MAN�@NAMCiŒAM;AN � �
�iŒDM;DN �.

We shall consider working in the background field gauge defined by expanding
about a solution to the classical equations of motion, i.e. DMcl

Fcl
MN D 0. The gauge

field is then given by AM D Acl
M C aM where aM is the quantum field. We find

FMN D Fcl
MN C Dcl

MaN � Dcl
NaM C iŒaM; aN � with DM

cl D @M C iAcl
M (14.12)

and thus

Sgauge D � 1

2g25

Z
d5xTr

h
Fcl
MNF

MNcl � 2.Dcl
MF

cl
MN/aN

i
(14.13)

C 1

g25

Z
d5xTr

h
�.Dcl

MaN/ .D
Mcl

aN/C.Dcl
MaN/ .D

Ncl
aM/ � i Fcl

MN ŒaM; aN �
i

C cubic and quartic terms in aM:

Note the second term in the first line vanishes by the equations of motion. Finally
we use
Z

d5xTr
h
.Dcl

MaN/ .D
Ncl

aM/
i

D
Z

d5xTr
h
�aN .D

cl
M DNcl

aM/
i

(14.14)

D
Z

d5xTr
h
aN ŒD

Ncl
;DM

cl� aM/ � aN .D
Ncl

DM
cl aM/

i

D
Z

d5xTr
h
i aN Fcl

NM aM/C .DNcl
aN/ .D

Mcl
aM/

i
:

Hence we find

Sgauge D � 1

2g25

Z
d5xTr

h
Fcl
MNF

MNcl
i

(14.15)

C 1

g25

Z
d5xTr

h
.aN .D

Mcl
DM

cl aN/C .DMcl
aM/

2 C 3i aM Fcl
MN aN

i

C cubic and quartic terms in aM:
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We must necessarily choose a gauge fixing action, Sg f . We take the gauge fixing
action

Sg f D � 1

g25�

Z
d5xTr

h
.DMcl

aM/
2
i
: (14.16)

Hence

Sgauge C Sg f D � 1

2g25

Z
d5xTr

h
Fcl
MNF

MNcl
i

(14.17)

C 1

g25

Z
d5xTr

�
.aN .D

Mcl
DM

cl aN/C .1� 1

�
/.DMcl

aM/
2 C 3i aM Fcl

MN aN
�

C cubic and quartic terms in aM:

The Fadeev-Popov ghost action in this case is given by

SFP D 2
1

g25

Z
d5xTr

h
.DM

cl Nc/ .DMcl
c/C i ŒaM; Nc� DMcl

c
i
: (14.18)

Gauge invariance in the background field gauge is a bit different than usual. In the
background field gauge the classical solution satisfies the same transformation law
as in Eq. (14.5). However the quantum fluctuation of the gauge field, aM, satisfies
the homogeneous gauge transformation

aM.x�; y/ ! U aM.x�; y/ U
�: (14.19)

In the next section we shall study the gauge theory with background gauge fields
given by Wilson lines. In this case the gauge bundle is flat, i.e. Fcl

NM D 0 and the
equations of motion for the quantum field aM is given by

DNcl
Dcl

N aM D 0: (14.20)

Wilson Loop Gauge Symmetry Breaking on M4 ˝ S1

Now, as before, we assume the 5th dimension is compactified on a circle S1

parametrized by y 2 Œ0; 2�R/. The gauge symmetry can then be broken by the
presence of a background gauge field A5. This symmetry breaking mechanism is
known as Hosotani or Wilson line symmetry breaking [293–298]. Consider the
constant background to be along the third isospin direction,

A5.y/ D A35T
3: (14.21)
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Using the single valued gauge transformation (periodic under y ! y C 2�R) given
by Eq. (14.5) with �.x�; y/ D �ny=R, n 2 Z:

U.y/ D exp


�inT3

y

R

�
; (14.22)

we obtain the transformation of A35:

A35 ! A35 C n=R: (14.23)

Therefore the gauge non-equivalent values of A35 can be chosen to lie between 0 and
1=R. The holonomy due to this constant background gauge field is given by

T D exp

�
i
I

A5dy

�
D exp

�
i˛T3


: (14.24)

with the arbitrary parameter ˛ � 2�RA35. Note the set of possible holonomies
f1;T˙1;T˙2; � � � g provides a mapping of the gauge group into the discrete group Z.
This non-trivial holonomy affects the spectrum of the theory. A massless periodic
scalar field � (satisfying �.y C 2�R/ D �.y/) with isospin eigenvalue I3 can be
decomposed into Kaluza-Klein modes

�.n/.x�/ exp.iny=R/: (14.25)

The 5-dimensional wave equation DMDM� D 0 splits into an infinite set of
4-dimensional wave equations for Kaluza-Klein modes �.n/ with masses given by

m2.n/�.n/ exp.iny=R/ D � �@y C iA35T
3
2
�.n/ exp.iny=R/ D


 n
R

C A35I3
�2
�.n/ exp.iny=R/:

(14.26)

It is now easy to obtain the spectrum of gauge fields.2 The gauge field A3�.y/ has
I3 D 0 and therefore its KK modes are not affected by the holonomy. The zero
mode of this field corresponds to the gauge field of the unbrokenU.1/. On the other
hand, the masses of the KK modes of the W˙ gauge bosons, with I3 D ˙1, are
given by m.n/ D j nR ˙ A35j. If A35 ¤ k

R , where k 2 Z, the gauge bosons W˙ are
all massive. Clearly the SO.3/ symmetry is broken to U.1/. Note, the symmetry
breaking scale satisfies 0 � A35 < 1=R, but is otherwise unconstrained.

2Recall, for a background field gauge with AM D Acl
M C aM where Acl

M is the background value
of the gauge field and aM are the small fluctuations, the background covariant derivative is given
by Dcl

M � @M C iŒAcl
M; �. If we use the covariant gauge fixing condition DMcl

aM � 0, then the

gauge field equations of motion are given by DMcl
Dcl

M aN C 3iFcl
NM aM D 0. Note, for a constant

background gauge field Fcl
NM � 0.
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Gauge Picture with Vanishing Background

A constant background gauge field A35 may be gauged away with the non-periodic
gauge transformation

U.y/ D exp
�
iyA35T

3

: (14.27)

In this gauge the covariant derivative in Eq. (14.26) is trivial, i.e. D5 D @5.
Nevertheless it is easy to see that, as expected, the physics is unchanged.

This gauge transformation is not single valued and thus the periodicity condition
�.y C 2�R/ D �.y/ becomes for the gauge transformed fields �0.y/ D U.y/ �.y/

�0.y C 2�R/ D exp
�
i˛T3


�0.y/: (14.28)

Now the mode expansions are of the form

�.n/.x�/ exp
�
i
�
n=R C A35I3


y
�

(14.29)

resulting in the identical spectrum as before.

14.2 SO(3) Gauge Theory onM4 ˝ S1=Z2

The S1=Z2 Orbifold

The S1=Z2 orbifold is a circle S1 modded out by a Z2 parity symmetry: y ! �y. The
5th dimension is now a line segment y 2 Œ0; �R�. This orbifold has two fixed points
at y D 0 and �R. The Lagrangian (14.4) is invariant under the parity transformation

A�.�y/ D A�.y/ (14.30)

A5.�y/ D �A5.y/: (14.31)

As in the case of compactification on a circle we consider a constant background
for A35 [Eq. (14.21)]. Clearly such a background is not consistent with the parity
operation, Eq. (14.31). However, following [299] we define a generalized parity by
combining the parity transformation (14.31) with the gauge transformation (14.23),
for n D 1, A35 ! A35 C 1=R. We then look for a consistent solution with constant
A35. There are now only two possible values for A35. The possibility A35 D 0 is
obviously allowed, but in this case the gauge symmetry is unbroken. The only
nontrivial choice corresponds to A35.y/ D 1

2R which changes sign under the “naive”
parity, A35.�y/ D � 1

2R , but is gauge equivalent to its original value. Therefore,
instead of (14.30)–(14.31) we define the fields for negative y, in the region ��R <
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y < 0, in terms of the fields defined for positive y in the fundamental domain,
0 < y < �R, via the generalized parity transformation (i.e. a combined “naive”
parity transformation (14.31) and a gauge transformation) such that, in general:

A�.�y/ D U.�y/A�.y/U
�.�y/ � iU.�y/@�U

�.�y/; (14.32)

A5.�y/ D �U.�y/A5.y/U
�.�y/ � iU.�y/@�yU

�.�y/; (14.33)

with

U.y/ D exp


�i

y

R
T3
�

(14.34)

It is useful to define new fields, W˙, in a usual way from A1 and A2:

W˙ D 1p
2

�
A1 � iA2


; T˙ D 1p

2

�
T1 ˙ iT2


: (14.35)

With this definition we have A1T1CA2T2 D WCTCCW�T� and ŒT3;T˙� D ˙T˙.
Using the identity3

exp


i
y

R
T3
�
T˙ exp



�i

y

R
T3
�

D exp


˙i

y

R

�
T˙ (14.36)

it is easy to show that the generalized parity transformation acts on gauge fields as
follows:

W�̇ .�y/ D exp


˙i

y

R

�
W�̇ .y/; (14.37)

W5̇ .�y/ D � exp


˙i

y

R

�
W5̇ .y/; (14.38)

A3�.�y/ D A3�.y/; (14.39)

A35.�y/ D �A35.y/C 1

R
: (14.40)

To summarize, using a more compact notation, we have the following constraints
on the fields (valid for all modes, except the constant piece of A35). Under the
generalized parity transformation the fields �P (with P D ˙1) satisfy:

�P.�y/ D P exp


i
y

R
I3
�
�P.y/ (14.41)

3See problem 10.
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with isospin eigenvalue I3 D ˙1; 0. The periodicity condition is given by:

�P.y C 2�R/ D �P.y/: (14.42)

We then obtain the following decomposition into KK modes:

�C.x�; y/ D
1X
nD0

�
.n/
C .x�/ exp



�i

y

2R
I3
�

cos n
y

R
for even I3; (14.43)

�C.x�; y/ D
1X
nD0

�
.n/
C .x�/ exp



�i

y

2R
I3
�

cos.n C 1=2/
y

R
for odd I3; (14.44)

��.x�; y/ D
1X
nD0

�.n/� .x�/ exp


�i

y

2R
I3
�

sin.n C 1/
y

R
for even I3; (14.45)

��.x�; y/ D
1X
nD0

�.n/� .x�/ exp


�i

y

2R
I3
�

sin.n C 1=2/
y

R
for odd I3: (14.46)

From transformations (14.37)–(14.40) we see that the KK mode expansion of A3�
[(+) field with I3 D 0] is given in Eq. (14.43) with corresponding masses n=R.
This is the only field which has a zero mode. It corresponds to the gauge field of
the unbroken U.1/. The expansion of W�̇ [(+) field with I3 D ˙1] is given in
Eq. (14.44) with corresponding masses .n C 1=2/=R. Similarly, the expansion of
W5̇ [(–) field with I3 D ˙1] is given in Eq. (14.46) with corresponding masses
.n C 1=2/=R. And finally, the expansion of A35 [(–) field with I3 D 0] is given by
Eq. (14.45) up to the value of the constant background:

A35.x�; y/ D 1

2R
C

1X
nD0

A3.n/5 .x�/ sin.n C 1/
y

R
: (14.47)

The holonomy T in this case is given by

T D exp.i
I

A35T
3/ D exp.i�T3/ D diag.�1;�1; 1/: (14.48)

Hence T2 D 1 or the set of possible holonomies f1;Tg maps the gauge group into
the discrete group Z2. Unlike the case of Wilson loops on S1 discussed in Sect. 14.1,
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the background gauge field and consequently the holonomy on S1=Z2 can only take
discrete values.

Now let us consider the gauge picture with vanishing background gauge field.
As in the case of compactification on a circle, we can gauge away the constant
background by the non-single valued gauge transformation given in Eq. (14.27).
The transformations under the generalized parity are now those of Eqs. (14.30)
and (14.31). In addition the non-single valued gauge transformation changes the
periodicity condition as in Eq. (14.28) with ˛ D � .

To obtain the spectrum of KK modes of a field � we consider both the
transformation under parity and the effect of a non-trivial holonomy. Under parity,

P W �PT.y/ ! �PT.�y/ D P�PT.y/; (14.49)

with P2 D 1 or P D ˙1. When going around the circle, the fields transform in the
following way:

T W �PT.y/ ! �PT.y C 2�R/ D T�PT.y/ (14.50)

with T2 D 1 or T D ˙1. Therefore there are four different kinds of fields �˙˙
corresponding to the four different combinations of .P;T/. It is easy to see that a
field with given .P;T/ can be expanded into the following modes:

�n.C;C/ D cos n
y

R

�n.C;�/ D cos.n C 1=2/
y

R

�n.�;C/ D sin.n C 1/
y

R

�n.�;�/ D sin.n C 1=2/
y

R
(14.51)

Only the .C;C/ fields have massless zero modes. Of all the gauge fields only A3�
is a .C;C/ field with a zero mode. W�̇ , A35 and W5̇ are .C;�/, .�;C/ and .�;�/
fields, respectively. Clearly the mode expansion and the corresponding KK masses
are the same as in the previous picture. Note, our gauge transformation parameters
[Eq. (14.5)] are constrained to satisfy �3.x�; y/ D �3n .x�/�n.C;C/ and �1;2.x�; y/ D
�1;2n .x�/�n.C;�/. Hence, SO.3/ is the symmetry everywhere in the five dimensions,
EXCEPT on the boundary at y D �R.
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Correspondence to S1=.Z2 � Z0
2
/ Orbifold

The S1=Z2 orbifold with holonomy T in the gauge picture without a constant
background gauge field is directly related to the S1=.Z2 �Z0

2/ orbifold used recently
in the literature [298, 300–310]. This correspondence is also evident in the work of
[299, 311]. We just need to identify the S1=.Z2 � Z0

2/ orbifold with S1, a circle of
circumference 4�R, divided by the Z2 transformation y ! �y and Z0

2 transformation
y0 ! �y0, where y0 � y � �R. The physical space is again the line segment
y 2 Œ0; �R� with orbifold fixed points at y D 0 and �R. It is easy to see that P 0 2 Z0

2

in this picture corresponds to the combined translation and parity transformation in
the previous picture, namelyP 0 D T P . Note, a point at y D y0 which corresponds
to y0 D y0 ��R is transformed by Z0

2 into the point y0 D �.y0 ��R/ corresponding
to y D �y0 C 2�R; this is equivalent to the action of T Z2 on the point at y D y0,
see Fig. 14.2.

The action of Z2 on the fields is given by

P W �PP0.y/ ! �PP0.�y/ D P�PP0.y/; (14.52)

with P2 D 1 or P D ˙1. Similarly, under Z0
2 we have

P 0 W �PP0.�R C y0/ ! �PP0.�R � y0/ D P0�PP0.�R C y0/ (14.53)

with P0 D TP and .P0/2 D 1 or P0 D ˙1.
It is easy to see what the holonomy means in this picture. Since points y0 and

y0 C 2�R are identified, the closed loop corresponds to going around half of the
circle (the circumference of the circle in this picture is 4�R). Going around the
whole circle (from y0 to y0 C 2�R and then from y0 C 2�R to y0 C 4�R) clearly
corresponds to T2. From Eq. (14.31) we see that going from y0C2�R to y0C4�R is
equivalent to going backwards from y0C2�R to y0. Therefore T2 D 1 and there are
only two possibilities for holonomy, T D C1 and T D �1, the same as in the S1=Z2
picture. Hence we have T 2 Z2. Note, in the above we have assumed that P and T

Fig. 14.2 The Z0

2 parity transformation is equivalent to the combined Z2 parity transformation and
translation T
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can be simultaneously diagonalized. In general however P and T do not commute.
In this case we would have P T P D T�1.

14.3 GUTs on an Orbi-Circle: Brief Review

Let us briefly review the geometric picture of orbifold GUT models compactified
on an orbi-circle S1=Z2. The circle S1 � R1=T where T is the action of
translations by 2�R. All fields ˚ are thus periodic functions of y (up to a finite
gauge transformation), i.e.

T W ˚.x�; y/ ! ˚.x�; y C 2�R/ D T ˚.x�; y/ (14.54)

where T 2 G satisfies T2 D 1. This corresponds to the translation T being realized
non-trivially by a degree-2 Wilson line (i.e., background gauge field—hA5i ¤ 0

with T � exp.i
H hA5idy/). Hence the space group of S1=Z2 is composed of two

actions, a translation, T W y ! yC 2�R, and a space reversal, P W y ! �y. There
are two (conjugacy) classes of fixed points, y D .2n/�R and .2n C 1/�R, where
n 2 Z (Fig. 14.3).

The space group multiplication rules imply T PT D P , so we can replace the
translation by a composite Z2 action P 0 D PT W y ! �y C 2�R. The orbicircle
S1=Z2 is equivalent to an R=.Z2 � Z0

2/ orbifold, whose fundamental domain is the
interval Œ0; �R�, and the two ends y D 0 and y D �R are fixed points of the Z2 and
Z0
2 actions respectively.

A generic 5D field ˚ has the following transformation properties under the Z2
and Z0

2 orbifoldings (the 4D space-time coordinates are suppressed),

P W ˚.y/ ! ˚.�y/ D P˚.y/ ; P 0 W ˚.y/ ! ˚.�y C 2�R/ D P0˚.y/ ;
(14.55)

where P; P0 � PT D ˙ are orbifold parities acting on the field ˚ in the appropriate
group representation.4 The four combinations of orbifold parities give four types of

–4πR

–3πR –πR πR 3πR

–2πR 2πR 4πR0

Fig. 14.3 The real line modded out by the space group of translations, T , and a Z2 parity, P

4Where it is assumed that ŒP; T� D 0.
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states, with wavefunctions

�m.CC/ � cos.my=R/;

�m.C�/ � cosŒ.2m C 1/y=2R�;

�m.�C/ � sinŒ.2m C 1/y=2R�;

�m.��/ � sinŒ.m C 1/y=R�; (14.56)

where m 2 Z. The corresponding KK towers have masses

MKK D
8<
:
m=R for .PP0/ D .CC/ ;
.2m C 1/=2R for .PP0/ D .C�/ and .�C/ ;
.m C 1/=R for .PP0/ D .��/ :

(14.57)

Note that only the ˚CC field possesses a massless zero mode.
For example, consider the Wilson line T D exp.i�T3/ D diag.�1;�1; 1/ 2

SO.3/. Let A�.y/ .A5.y// have parities P D C.�/, respectively. Then only A3� has
orbifold parity .CC/ and A35 has orbifold parity .��/.5 Define the fields

W˙ D 1p
2
.A1 � iA2/ (14.58)

with T˙ D 1p
2
.T1 ˙ iT2/ and ŒT3;T˙� D ˙T˙. Then W�̇ ŒW5̇ � have orbifold par-

ity .C�/ Œ.�C/�, respectively. Thus the SO.3/ gauge group is broken to SO.2/ �
U.1/ in 4D. The local gauge parameters preserve the .P;T/ parity/holonomy, i.e.

�3.x�; y/ D �3m.x�/�m.CC/
�1;2.x�; y/ D �1;2m .x�/�m.C�/: (14.59)

Therefore SO.3/ is not the symmetry at y D �R.

14.4 SO.10/ in 5D on M4 ˝ S1=.Z2 � Z0
2
/

We have the adjoint representation of SO.10/ given by AAD1;��� ;45
M with M D

0; 1; 2; 3; 5. Under Z2 we choose

AAD1;��� ;45
� ; P D C1 (14.60)

AAD1;��� ;45
5 ; P D �1

5Note, A35.�y/ D �A35.y/C 1
R .
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and under Z0
2 we choose

A� 2 SO.6/˝ SO.4/ � PS; P0 D C1 (14.61)

A� 2 SO.10/=PS; P0 D �1
A5 2 PS; P0 D �1

A5 2 SO.10/=PS; P0 D C1:

Recall the generators of SO.10/ in the ten dimensional representation given by

˙ab
ij D �˙ba

ij ; with a; b D 1; � � � ; 10I i; j D 1; � � � ; 10: (14.62)

Then the gauge fields can be written as matrices with

. QA�/ij D 1

2
Aab
� ˙

ab
ij : (14.63)

Under a global SO.10/ gauge transformation, Oij 2 SO.10/ satisfying .OT O/ D 1;
the gauge fields transform by

. QA0
�/ij D .O QA� OT/ij: (14.64)

Now choose the holonomy

T D diag.�1;�1;�1;�1;�1;�1; 1; 1; 1; 1/; with T 2 SO.10/; T2 D 1:
(14.65)

This implies that

T W QAPT.x�; y/ ! QAPT.x�; y C 2�R/ D T QAPT.x�; y/ T: (14.66)

For

QA 2 PS we have T QA T D QA (14.67)

QA 2 SO.10/=PS we have T QA T D � QA:

To summarize, under the parities fP; P0g (where P0 D PT) we have

A�.CC/ 2 PS; A�.C�/ 2 SO.10/=PS; A5.��/ 2 PS; A5.�C/ 2 SO.10/=PS:

(14.68)

Hence only the gauge fields A� 2 PS have massless modes. All other Kaluza-Klein
modes have mass of order the compactification scale and larger.
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Thus we can use this S1=Z2 orbifold with non-trivial Wilson line to break the
gauge group SO.10/ to the SU.4/C �SU.2/L �SU.2/R Pati-Salam group. Similarly,
starting with SU.5/ and the holonomyT 2 SU.5/with T D diag.1; 1; 1;�1;�1/we
can use this orbifold to break the gauge group SU.5/ to the SU.3/C�SU.2/L�U.1/Y
Standard Model gauge group.

14.5 Higgs Doublet-Triplet Splitting in Orbifold GUTs

Consider the gauge group SO.10/ with the Higgs doublets in the 10. Under SO.10/
the Higgs transforms by

100
i D Oij 10j: (14.69)

If we define the parities fP; Tg with

P W 10i.x�; y/ ! 10i.x�;�y/ D P 10i.x�; y/ with P D C1 (14.70)

T W 10i.x�; y/ ! 10i.x�; y C 2�R/ D T 10i.x�; y/ with T given in Eq. (14.65);

then the color triplets, C D .6; 1; 1/ are, odd under T and the Higgs doublets, H D
.1; 2; 2/ are even under T. To summarize, under the parities fP; P0g we have

H.CC/; C.C�/: (14.71)

Hence, only the Higgs doublets have massless modes.
Similarly for SU.5/, we can arrange it such that only the Higgs doublets have

parity .CC/ with massless modes.

14.6 Fermions in 5D

The Dirac algebra in 5D is given in terms of the 4 � 4 gamma matrices �M; M D
0; 1; 2; 3; 5 satisfying f�M; �Ng D 2gMN with �25 D �1.6 A four component massless
Dirac spinor 
.x�; y/ satisfies the Dirac equation

i�M@
M
 D 0 D i.��@

� � �5@y/
: (14.72)

6The 5D �5 D i

��I2�2 0

0 I2�2

�
.
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In 4D the four component Dirac spinor decomposes into two Weyl spinors with


 D
�

 1

i�2 �
2

�
D
�
 L

 R

�
(14.73)

where 1;2 are two left-handed Weyl spinors. In general, we obtain the normal mode
expansion for the fifth direction given by

 L;R D
X

.an.x/ cos n
y

R
C bn.x/ sin n

y

R
/: (14.74)

If we couple this 5D fermion to a local gauge theory, the theory is necessarily vector-
like; coupling identically to both  L;R.

We can obtain a chiral theory in 4D with the following parity operation

P W 
.x�; y/ ! 
.x�;�y/ D P
.x�; y/ (14.75)

with P D i�5. We then have


L � cos n
y

R


R � sin n
y

R
: (14.76)

Quarks and Leptons in 5D: SO.10/

Quarks and leptons are fermions and the SM gauge group is chiral. Therefore we
must project out half of the 5D chiral modes as discussed above. We choose to
retain only the left-handed chiral states. Now we need to discuss how the Wilson
line affects the spectrum of fermions when they are placed into complete GUT
multiplets. For example, consider quarks and leptons in the spinor representation
of SO.10/. In Sects. 14.4 and 14.5 we used a Wilson line to break SO.10/ to PS and
give mass to the Higgs triplets, keeping the doublets massless. Now we apply the
same Wilson line to the 16.

The holonomy

T D diag.�1;�1;�1;�1;�1;�1; 1; 1; 1; 1/D

0
BBBBB@

�1 0 0 0 0

0 �1 0 0 0

0 0 �1 0 0
0 0 0 1 0

0 0 0 0 1

1
CCCCCA

˝ 12�2

(14.77)
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on the ten dimensional representation. Note, that in this tensor product notation
we have

B � L D 2

3

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCA

˝ � (14.78)

with � D �2 [see Eq. (5.83)]. It is easy to show that7

T � exp.�i
3

2
� .B � L//: (14.79)

Consider the field  L.x�; y/ in the spinor representation of SO.10/. Let

T W  L.x�; y/ !  L.x�; y C 2�R/ D T  L.x�; y/: (14.80)

Recall, the  L contains the states  L � fq; lI Nu; Nd; N�; Neg. Moreover, under the
action of T we have

T q D �i qI T l D �i lI T Nu D i NuI T Nd D i NdI T N� D i N�I T Ne D i Ne: (14.81)

Thus in terms of the Pati-Salam fields

Q D .q l/; NQ D .Nq Nl/ (14.82)

where

Nq D
� Nu

Nd
�
; Nl D

� N�
Ne
�

(14.83)

(see Sect. 5.1) we have

T Q D �i QI T NQ D i NQ: (14.84)

Note, T2 D �1, hence it is NOT a Z2 parity. Therefore we define a matter
symmetry given by PF , with PF 2 Z4 such that

PF L D ˙i  L: (14.85)

Then the operator

P0 D T P PF (14.86)

7See problem 11.
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satisfied P02 D 1. We can thus choose either Q or NQ to have zero modes, BUT
NOT BOTH. As a consequence, in order to obtain one complete family of quarks
and leptons, we need two spinor representations,  1L;  2L in 16s with opposite
charges under PF .

Quarks and Leptons in 5D: SU.5/

Quarks and leptons in SU.5/ sit in the

10 D fNu; q; Neg; N5 D fNd; lg: (14.87)

The holonomy

T D

0
BBBBB@

C1 0 0 0 0

0 C1 0 0 0

0 0 C1 0 0

0 0 0 �1 0

0 0 0 0 �1

1
CCCCCA

D exp.i 3� Y/ (14.88)

with

Y D

0
BBBBB@

�2=3 0 0 0 0

0 �2=3 0 0 0

0 0 �2=3 0 0
0 0 0 1 0

0 0 0 0 1

1
CCCCCA

(14.89)

breaks SU.5/ to the SM gauge group and splits Higgs doublets and triplets. In order
to obtain one complete family of quarks and leptons after orbifolding we need to,
once again, double the 5D spectrum with two (10s and N5s) such that we can identify
the fields by the massless modes they contain, i.e.

10.Nu; Ne/; 10.q/I N5.l/; N5.Nd/: (14.90)

This requires the addition of a matter parity defined by PF D ˙1, such that

P0 D T P PF: (14.91)

Note, given that the Higgs doublets are contained in a 5 or N5 of SU.5/, in order
that the color triplets obtain odd charge under T we also need to add an additional
matter parity PF D �1 on the Higgs multiplet.
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0 5D Bulk πR

Fig. 14.4 The 5D orbifold is a line segment with fixed points at 0 and �R. At the fixed points the
theory is four dimensional. We can also put states at the fixed points. In fact they do not need to be
in complete multiplets of the GUT group at �R, because the GUT symmetry is broken at this fixed
point. We only have PS for an SO.10/ GUT or the SM for an SU.5/ GUT

Quarks and Leptons on 4D Fixed Points

The orbifold in 5D is described by 4D Lorentz space � a line segment Œ0; �R�
(see Fig. 14.4). The GUT group is a symmetry in the 5D bulk, but it is broken to
a subgroup on the 4D fixed point at �R. In an orbifold GUT field theory we have
the option of putting states either in the bulk or on the 4D boundary surfaces at 0
and �R. Typically we prefer to put the gauge and Higgs fields in the bulk, since
they couple to states in the bulk or on the boundary surfaces. However we have
the option of putting the matter fields either in the bulk or on the boundary. The
decision depends on the phenomenology we wish to obtain. We shall discuss this in
more detail later when we consider SUSY GUTs on orbifolds.

14.7 Supersymmetric Orbifolds

We define the chiral superfields

H.y�; �˛/ D h.y�/C p
2.� Qh.y�//C �2 Fh.y�/ (14.92)

Hc.y�; �˛/ D hc.y�/C p
2.� Qhc.y�//C �2 Fhc.y�/ (14.93)

where the fields, Hc, are charge conjugates of H. The fundamental chiral super-
multiplet includes a complex scalar h and a Weyl spinor Qh. However, as we said
earlier, the minimal spinor in 5D is a four component spinor. Hence the minimal
supermultiplet in 5D, written in terms of 4D superfields, must include two complex
scalars and 4 fermion field degrees of freedom. Thus we have two 4D superfields

H.y�; y5; �˛/C Hc.y�; y5; �˛/ (14.94)

with the component fields

h; hc� $ 
h D
 Qh
i�2 Qhc�

!
: (14.95)
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This actually corresponds to the degrees of freedom of an N D 2 SUSY
hypermultiplet in 4D, which is an N D 1 supermultiplet in 5D.

Similarly for a gauge supermultiplet in 4D we have (in the adjoint representation
of the group) the degrees of freedom of a massless gauge field, A�, (with 2 helicities)
and a gaugino, �, (a Weyl spinor with 2 helicities). Note the 2 helicities correspond
to a representation of the “little group,” SO.2/, for massless particles in 4D plus
parity. In 5D the “little group” for massless particles is SO.3/ and therefore a vector
has 3 degrees of freedom. Hence the vector supermultiplet in 5D includes 3 degrees
of freedom for each vector field, AM , 1 real scalar, �, and a Dirac fermion, 
� D�

�1

i�2 ��
2

�
where �1;2 are left-handed Weyl spinors. These states correspond to the

vector multiplet of N D 1 SUSY in 5D. In terms of 4D massless superfields we have
2 bosonic and fermionic degrees of freedom in a 4D N D 1 vector multiplet

V � .A�; �1/ (14.96)

and and a 4D chiral multiplet

˙ D .
1p
2
.� C iA5/; �2/: (14.97)

Again, we have N D 1 in 5D is equivalent to N D 2 in 4D. In fact we can see
this given the SUSY generators in 5D,

Q˛ D
�

Q1
i�2 Q�

2

�
D
�
QL

QR

�
; (14.98)

i.e. it’s equivalent to two SUSY generators in 4D. For example, operating with Qi

on Q̇ D 1p
2
.� C iA5/ we have �i ( Qi Q̇ and A� ( Qi �j ( Qi Qj Q̇ . Similarly

for the N D 2 hypermultiplet in 4D.
These results were formalized in [312]. They show in detail that the 5D SUSY

Lagrangian can be written in terms of 4D superfields. The general result is given by

L D
Z

d4�
1

kg25
TrŒ.

p
2@5 C˙�/ e�V .�p

2@5 C˙/ eV C @5 e
�V @5 e

V �

C
Z

d2�
1

4kg25
TrŒW˛ W˛�C h:c: (14.99)

C
Z

d4�ŒHc eV Hc� C H� e�V H�

C
Z

d2�.Hc .m C .@5 � 1p
2
˙// H/C h:c:
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with an action

S D
Z

d5xL : (14.100)

Orbifolding 5D SUSY: A Simple Example

Define a Z2 orbifold with action P given by

P W V.x�; y; �/ ! V.x�; �y; �/ D V.x�; y; �/ (14.101)

˙.x�; y; �/ ! ˙.x�; �y; �/ D �˙.x�; y; �/
H.x�; y; �/ ! H.x�; �y; �/ D PH.x�; y; �/

Hc.x�; y; �/ ! Hc.x�; �y; �/ D �PHc.x�; y; �/:

Only even parity fields, V; H (or Hc) not both, have zero modes. Thus we have used
this Z2 parity to break N D 2 SUSY to N D 1 SUSY in 4D. Note, ˙ necessarily
has odd parity, since under the orbifold, @5 ! �@5 and we can only orbifold by
symmetries of the action. Note also, if there were a 5D mass term m, then we require
m to depend on y such that under the orbifold m.y/ ! �m.�y/,

As another simple example, we can write down the 5D orbifold version of SUSY
QED. We have

S D
Z

d5xf 1
e25

Z
d4�Œ.

p
2@5 C˙�/ e�V .�p

2@5 C˙/ eV C @5 e
�V @5 e

V �

C 1

4e25

Z
d2�ŒW˛ W˛�C h:c: (14.102)

C
Z

d4�.ŒEc eV E�c C E� e�V E�C Œ NE eV NE� C NEc� e�V NEc�/

C
Z

d2�.Ec .m1 C .@5 � 1p
2
˙// E C NE .m2 C .@5 � 1p

2
˙// NEc/C h:c:g

where NE; Ec have the same electric charge. Choosing the Z2 parity

PE D CE; P NE D CNE; PV D CV; PEc D �Ec; P NEc D � NEc; P˙ D �˙;
(14.103)

then only states with even parity have massless modes. We thus obtain N D 1 SUSY
QED in 4D plus an infinite tower of Kaluza-Klein massive modes.

The 5D gravitino
M D . 1M;  
2
M/ decomposes into two 4D gravitini 1�,  2� and

two dilatini  15 ,  25 . To be consistent with the 5D supersymmetry transformations
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one can assign positive parities to 1�C 2�, 15� 25 and negative parities to 1�� 2�,
 15 C  25 ; this assignment partially breaks N D 2 to N D 1 in 4D.

In the next section we shall discuss SUSY SU.5/ in 5D on the orbifold M4 �
S1=.Z2 � Z0

2/ with the gauge fields and Higgs multiplets in the bulk.

14.8 A Supersymmetric SU.5/ Orbifold GUT

Consider the 5D orbifold GUT model of [313, 314].8 The model has an SU.5/
symmetry broken by orbifold parities to the SM gauge group in 4D. The compacti-
fication scale Mc D R�1 is assumed to be much less than the cutoff scale.

The gauge field is a 5D vector multiplet V D .AM; �1; �2; �/, where AM; � (and
their fermionic partners �1; �2) are in the adjoint representation (24) of SU.5/.
This multiplet consists of one 4D N D 1 supersymmetric vector multiplet V D
.A�; �1/ and one 4D chiral multiplet ˙ D . 1p

2
.� C iA5/; �2/. We also add two 5D

hypermultiplets containing the Higgs doublets, H D .H5;H5c/, H D . NHN5; NHcN5/.
The orbifold parities for various states in the vector and hyper multiplets are

chosen as follows [313, 314] (where we have decomposed all the fields into SM
irreducible representations and under SU.5/we have taken P D .CCCCC/; P0 D
.� � � C C/)

States P P0 States P P0
V.8; 1; 0/ C C ˙.8; 1; 0/ � �
V.1; 3; 0/ C C ˙.1; 3; 0/ � �
V.1; 1; 0/ C C ˙.1; 1; 0/ � �
V.N3; 2; 5=3/ C � ˙.3; 2;�5=3/ � C
V.3; 2;�5=3/ C � ˙.N3; 2; 5=3/ � C
T.3; 1;�2=3/ C � Tc.N3; 1; 2=3/ � C
H.1; 2;C1/ C C Hc.N1; 2;�1/ � �
NT.N3; 1;C2=3/ C � NTc.3; 1;�2=3/ � C
NH.1; 2;�1/ C C NHc.1; 2;C1/ � �

:

(14.104)

We see the fields supported at the orbifold fixed points y D 0 or �R have parities
P D C or P0 D C, respectively. They form complete representations under the
SU.5/ or SM groups; the corresponding fixed points are called SU.5/ and SM
“branes.” In a 4D effective theory one would integrate out all the massive states,
leaving only massless modes of the P D P0 D C states. With the above choices of

8For other orbifold GUT models in 5D, see [298, 303, 305, 315–318] or 6D, see [319, 320].
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orbifold parities, the SM gauge fields and the H and NH chiral multiplet are the only
surviving states in 4D. We thus have an N D 1 SUSY in 4D. In addition, the T; NT
and Tc; NTc color-triplet states are projected out, solving the doublet-triplet splitting
problem that plagues conventional 4D GUTs.

14.9 Gauge Coupling Unification

We follow the field theoretical analysis in [301] (see also [321, 322]).9 It has been
shown there that the threshold correction to a generic gauge coupling due to a tower
of KK states with masses MKK D m=R is given by

˛�1.�/ D ˛�1.�0/C b

4�

Z r��2
0

r��2

dt

t
�3

�
it

�R2

�
; (14.105)

where the integration is over the Schwinger parameter, t. The parameters �0 and �
are the IR and UV cut-offs, and r D �=4 is a numerical factor. �3 is the Jacobi theta
function, �3.t/ D P1

mD�1 ei�m2t, representing the summation over KK states.
For our S1=Z2 orbifold there is one modification in the calculation. There are four

sets of KK towers, with mass MKK D m=R (for P D P0 D C), .m C 1/=R (for P D
P0 D �) and .mC 1=2/=R (for P D C, P0 D � and P D �, P0 D C), where m � 0.
The summations over KK states give respectively 1

2

�
�3.it=�R2/� 1


for the first

two cases and 1
2
�2.it=�R2/ for the last two (where �2.t/ D P1

mD�1 ei�.mC1=2/2t),
and we have separated out the zero modes in the P D P0 D C case.

Tracing the renormalization group evolution from low energy scales, we are
first in the realm of the MSSM, and the beta function coefficients are bMSSM D
.� 33

5
;�1; 3/. The next energy threshold is the compactification scale Mc. From this

scale to the cut-off scale, M�, we have the four sets of KK states.
Collecting these facts, and using �2.it=�R2/ ' �3.it=�R2/ ' p

�
t R for

t=R2 
 1, we find the RG equations,

˛�1
i .MZ/ D ˛�1� � bMSSM

i

2�
log

M�
MZ

C 1

4�

�
bCC
i C b��

i


log

M�
Mc

(14.106)

� bG

2�

�
M�
Mc

� 1

�
C ı2i C ıli

for i D 1; 2; 3, where ˛�1� D 8�2R
g25

and we have taken the cut-off scales,

�0 D Mc D 1
R and � D M�. (Note, this 5D orbifold GUT is a non-renormalizable

theory with a cut-off. In string theory, the cut-off will be replaced by the physical

9See problem 12.
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string scale, MSTRING.) The .CC/ modes include the KK tower of the MSSM gauge
sector plus the pair of Higgs doublets, while the .��/ modes include the KK tower
of the chiral multiplet,˙ , and the charge conjugates Higgs doublets. Hence we find

�
bCC
i C b��

i

 D 2

3
bi.VMSSM/C bi.H; NH; Hc; NHc/: (14.107)

bG D P
PD˙;P0D˙ bGPP0 , so in fact it is the beta function coefficient of the orbifold

GUT gauge group, G D SU.5/. The beta function coefficients in the last two terms
have an N D 2 nature, since the massive KK states enjoy a larger supersymmetry.
In general we have bG D 2C2.G / � 2NhyperTR. The first term [in Eq. (14.106)] on
the right is the 5D gauge coupling defined at the cut-off scale, the second term
accounts for the one loop RG running in the MSSM from the weak scale to the cut-
off, the third and fourth terms take into account the KK modes in loops above the
compactification scale and the last two terms account for the corrections due to two
loop RG running and weak scale threshold corrections.

It should be clear that there is a simple mathematical correspondence to the 4D
analysis. We have

˛�1
G .4D/ $ ˛�1� � bG

2�

�
M�
Mc

� 1

�
.5D/

ıhi .4D/ $ 1

4�

�
bCC
i C b��

i


log

M�
Mc

� bMSSM
i

2�
log

M�
MG

.5D/: (14.108)

Thus in 5D, the GUT scale threshold corrections determine the ratio M�=Mc (note
the second term in Eq. (14.108) does not contribute to ıhs D 1

7
.5ı1 � 12ı2 C 7ı3/).

For SU.5/ we have bCC C b�� D .�6=5; 2; 6/ and given ıhs [Eq. (6.21)] we have

ıhs D 12

28�
log

M�
Mc

� C0:94 (14.109)

or

M�
Mc

� 103: (14.110)

If the GUT scale is defined at the point where ˛1 D ˛2, then we have ıh1 D
ıh2 or log M�

MG
� 2. In 5D orbifold GUTs, nothing in particular happens at the 4D

GUT scale. However, since the gauge bosons affecting the dimension 6 operators for
proton decay obtain their mass at the compactification scale, it is important to realize
that the compactification scale is typically lower than the 4D GUT scale and the cut-
off is higher (see Fig. 14.5). Let’s put in some numbers and see what the scales turn
out to be. For example, let’s take the color triplet mass mT D 1

2 R D 2 � 1014 GeV.
We then have the compactification scale, Mc D 4 � 1014 GeV, the cut-off scale,
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δ3

δ2

μMSUSY Mc MG M∗

δi = 2π (1/αi − 1/α1)

3

Fig. 14.5 The differences ıi D 2�.1=˛i � 1=˛1/ are plotted as a function of energy scale �. The
threshold correction �3 defined in the 4D GUT scale is used to fix the threshold correction in the
5D orbifold GUT

M� � 4 � 1017 GeV and the 4D GUT scale, MG � 5 � 1016 GeV. The particular
numbers would depend on the threshold corrections at the electroweak scale.

14.10 Quarks and Leptons in 5D Orbifold GUTs

Quarks and lepton fields can be put on either of the orbifold “branes” or in the 5D
bulk. If they are placed on the SU.5/ “brane” at y D 0, then they come in complete
SU.5/multiplets. As a consequence couplings of the type given by the first term

W �
Z

d2�
Z

dy ı.y/ . NH 10 N5C H 10 10/ (14.111)

will lead to bottom—tau Yukawa unification. This relation is good for the third
generation and so it suggests that the third family should reside on the SU.5/ brane.
Since this relation does not work for the first two families, they might be placed in
the bulk or on the SM brane at y D � R. Without further discussion of quark and
lepton masses (see [83, 314, 318, 323] for complete SU.5/ or SO.10/ orbifold GUT
models), let us consider proton decay in orbifold GUTs.
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14.11 Proton Decay

Dimension 6 Operators

The interactions contributing to proton decay are those between the so-called X
gauge bosons A.C�/

� 2 V.C�/ (where A.C�/
� ai .x�; y/ is the five dimensional gauge

boson with quantum numbers .N3; 2;C5=3/ under SU(3)� SU(2) � U(1), a and i are
color and SU(2) indices respectively) and the N D 1 chiral multiplets on the SU.5/
brane at y D 0. Assuming all quarks and leptons reside on this brane we obtain the
�B ¤ 0 interactions given by

S�B¤0 D � g5p
2

Z
d4xA.C�/

� ai .x�; 0/J
�
ai.x�/

� C h:c: : (14.112)

The currents J�ai are given by:

J�ai D �abc �ij.u
c/�b N�� qcj C q�

ai N�� ec � Ql�i N�� .dc/a
D .uc/� N�� q C q� N�� ec � Ql� N�� dc ; (14.113)

Upon integrating out the X gauge bosons we obtain the effective lagrangian for
proton decay

L D � g2G
2M2

X

X
i;j

�
.q�

i N��uci / .Ql�j N��dcj / C .q�
i N��eci / .q�

j N��ucj /
�
; (14.114)

where all fermions are weak interaction eigenstates and i; j; k D 1; 2; 3 are family
indices. The dimensionless quantity

gG � g5
1p
2�R

(14.115)

is the four-dimensional gauge coupling of the gauge bosons zero modes. The
combination

MX D Mc

�
; (14.116)

proportional to the compactification scale

Mc � 1

R
; (14.117)
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is an effective gauge vector boson mass arising from the sum over all the Kaluza-
Klein levels:

1X
nD0

4

.2n C 1/2M2
c

D 1

M2
X

: (14.118)

Before one can evaluate the proton decay rate one must first rotate the quark and
lepton fields to a mass eigenstate basis. This will bring in both left- and right-
handed quark and lepton mixing angles. However, since the compactification scale
is typically lower than the 4D GUT scale, it is clear that proton decay via dimension
6 operators is likely to be enhanced.

On the other hand, if quarks and leptons are in the bulk then the dimension 6
operators couple massless quarks to massive KK excitations. In this case proton
decay is very much suppressed.

Dimension 5 Operators

The dimension 5 operators for proton decay result from integrating out color triplet
Higgs fermions. However in this simplest SU.5/ 5D model the color triplet mass is
of the form [312]

W �
Z

d2� dy .T.�C/c @y T.C�/C NT.�C/c @y NT.C�// (14.119)

where a sum over massive KK modes is understood. Since only T; NT couple directly
to quarks and leptons, no dimension 5 operators are obtained when integrating out
the color triplet Higgs fermions.

In fact, a U.1/R symmetry can be defined which prevents dimension 5 proton
decay with the U.1/R charges of the N = 1 superfields given in Table 14.1 [314]
and the superpotential has U.1/R charge, +2. The U.1/R symmetry is broken when
supersymmetry is broken, leaving an unbroken Z2 subgroup of this U.1/R which is
R parity. Thus dimension 4 baryon and lepton number violating operators are also
forbidden.

Table 14.1 U.1/R charges for 4D vector and chiral superfields

V ˙ H Hc NH NHc 10 10c N5 N5c
U.1/R 0 0 0 2 0 2 1 1 1 1



14.11 Proton Decay 183

Dimension 4 Baryon and Lepton Violating Operators

If the theory is constructed with an R parity or family reflection symmetry, then no
such operators will be generated (see previous discussion).

Summary

In this chapter we have introduced the concept of orbifold GUTs in 5D. We have
shown that GUT symmetry breaking and Higgs doublet-triplet splitting can natu-
rally be accomplished via Wilson lines. Thus there is no need for complicated GUT
symmetry breaking and doublet-triplet splitting sectors as in 4D GUTs. In addition,
one never requires GUT representations larger than the adjoint representation in
order to construct “realistic” models. This is nice, since string theories which include
gravity, do not contain massless representations of GUT groups larger than the
adjoint representation. We have seen that gauge coupling unification is satisfied
with GUT threshold corrections coming from the Kaluza-Klein excitations. The
4D GUT scale in these models is not a physical scale. It is replaced instead by the
compactification scale. Moreover the compactification scale is typically smaller than
the 4D GUT scale. Note, it is the compactification scale which determines the mass
of the GUT gauge bosons which mediate proton decay. As a result the dimension 6
operators contributing to proton decay may be enhanced. However the actual proton
decay rate depends sensitively on whether the quarks and leptons reside on orbifold
fixed points with a local GUT symmetry, in which case the proton decay rate may be
enhanced, or the quarks and leptons reside in the bulk, in which case proton decay
rates are suppressed (or forbidden entirely [324]). Finally, dimension 5 operators for
proton decay can easily be forbidden due to U.1/ R symmetries.



Chapter 15
SO.10/ SUSY GUT in 5D

We consider a five dimensional supersymmetric SO(10) GUT compactified on an
S1=.Z2 � Z0

2/ orbifold where S1 � R1=T and T is the action of translations by
4�R (see Sect. 14.2). The first orbifold, Z2, under which y ! �y, breaks 5D ND1
supersymmetry (4D ND2) to 4D ND1. The other orbifold, Z0

2, under which y !
�y C �R, breaks SO(10) down to the PS gauge group SU.4/C � SU.2/L � SU.2/R.
The fundamental domain of the y direction is the line segment y 2 Œ0; �R�. SO(10)
gauge symmetry is present everywhere except at the point y D �R, which only has
Pati-Salam gauge symmetry. Hence, we call the two inequivalent fixed points the
“SO(10)” (y D 0) and “Pati-Salam” branes (y D �R) where each fixed point is a
three-brane (3+1 dimensional spacetime). The Higgs mechanism on the PS brane
completes the breaking of the PS gauge symmetry to the SM gauge group.

The fields which live in the five dimensional space between the branes (known
as the “bulk”) are even or odd under the orbifold parities. This part of the
setup, including the orbifold structure, field parities, and supersymmetry and gauge
symmetry breaking are based on work done in [305] and [317]. For more details,
please see these references.

We wish to relate some of our fields by a family symmetry, D3, under which the
first and second family fields form a doublet. Other fields within our model will
be in various representations of D3 which will affect the structure of the Yukawa
matrices we generate. We take the family symmetry to be independent of the
orbifold symmetries. A brief summary of the D3 group is provided in Sect. 10.4,
where we give the information necessary to understand the family representations
and couplings used in our model.

The 5D supersymmetric vector multiplet V D .AM; �1; �2; �/ contains a 4D
vector multiplet V D .A�; �1/ and a 4D chiral adjoint ˙ D ..� C iA5/=

p
2; �2/

[see Eq. (14.97)]. For a generic hypermultiplet H D .h; hc; Qh; Qhc/ which breaks up
into the 4D chiral multiplets H D .h; Qh/ and Hc D .hc; Qhc/ [see Eq. (14.92)], we
have the 5D action [see Eq. (14.99)].

© Springer International Publishing AG 2017
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We now briefly summarize the gauge unification results given by Kim and Raby
[317]. A 5D gauge theory is non-renormalizable and gets large corrections at the
cutoff. Corrections to gauge couplings, however, will be the same for all couplings
unified into the larger gauge group. These corrections will affect the absolute values
of the gauge couplings, but not the differences. Further, if the gauge symmetry is
broken only by orbifolding or by a Higgs mechanism on the branes, the differences
in the couplings will have a logarithmic, calculable running.

The states which affect the differential running are the bulk vector multiplet V
and the bulk Higgs hypermultiplet H .1 The placement and number of complete
matter multiplets does not affect gauge coupling unification, since matter multiplets
(16s of SO(10)) act equally across the three gauge couplings and cannot affect the
coupling differences. Those states in the theory outside of the MSSM have twisted
orbifold boundary conditions and so have masses at the compactification scale (Mc).
For energies below Mc, the theory is the MSSM. The effects of running between Mc

and M� (the cutoff scale), including the Kaluza-Klein (KK) towers, are taken as
threshold corrections at Mc. Without these threshold corrections, it is known that
the MSSM unifies around MG � 3 � 1016 GeV with a coupling of ˛GUT � 1=24

and a GUT-scale threshold correction for ˛3 of "3 � �0:04. Assuming unification
in the orbifold theory at the cutoff scale M� and that the PS breaking Higgs VEV
is of order the cutoff scale, we can solve for M� and Mc in terms of the 4D GUT
parameters MG, ˛GUT, and "3. This leads to M� � 1017 GeV and Mc � 1014 GeV
[317].

The matter field locations are constrained by proton decay:

• Matter fields on the SO(10) brane
There are gauge bosons within SO(10) which mediate baryon (B) and lepton (L)
number-violating interactions. All of these are outside of the Standard Model and
hence have masses of order Mc or higher. After integrating out these fields (and
their KK modes), we get dimension six operators which violate B and L for any
matter multiplets on the SO(10) brane. These operators are suppressed by 1=M2

c .
Given Mc � 1014 GeV, current bounds on proton decay rule out models which
have these operators for the first and second families. Thus only the third family
can reside on the SO(10) brane [103].2 Dimension 5 proton decay operators

1When considering differential running of the gauge couplings, a Higgs hypermultiplet in the bulk
is effectively the same as a 4D 10 of SO(10) with light Higgs MSSM doublets and heavy Higgs
triplets of mass Mc. This setup admits gauge coupling unification as shown by Kim and Raby
[317]. In particular, see the calculations leading to Eq. (3.13) of that paper. Effects from brane
Higgs doublets would be felt up to M� and would tend to inhibit unification since they drive the
couplings apart rather than together.
2With dimension six operators for the third family, mixing between this family and the first two
can induce proton decay. Assuming that the mixing is of order jVubj or jVcbj and that the gauge
bosons have mass at Mc, naive calculations using formulae in [103] put the proton lifetime many
orders of magnitude above current limits, since this leads to an effective gauge boson mass of order
Mc=.VcbVub/ � 6� 1017 GeV.
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vanish since the color triplet Higgs states obtain off-diagonal mass with triplets
in 10 and these states do not couple to matter.

• Matter fields on the PS brane or in the bulk
Pati-Salam gauge symmetry does not relate the left-handed fields  (.4; 2; 1/
in PS) to the right-handed fields  c (.4; 1; 2/ in PS), and we do not get baryon
number-violating dimension six operators after integrating out the heavy gauge
bosons. Therefore, any matter fields can be on the PS brane as long as the PS
breaking scale is not extremely low. This scale in our theory is M� � 1017 GeV,
and proton decay is not a problem here.
In principle, we can consider higher dimensional operators with derivative
interactions @5 D @=@y. Because the coefficients of the higher dimensional
operators are not determined from the theory we cannot calculate the proton
decay rate from these operators accurately. However, we can get a bound that
is consistent with our setup by assuming unknown coefficients to be order one.
See Kim and Raby for more details [317].

Proton decay constrains the first and second families to reside either in the bulk
or on the PS brane, but does not constrain the location of the third family. We choose
to place all three families on the PS brane.

Let us summarize the basic setup.

• Gauge symmetry : SO(10) in the bulk and at y D 0, Pati-Salam at y D �R.
• Higgs fields come from 10 dimensional hypermultiplets in the bulk.
• First and second family matter fields, a doublet under D3, are on the PS brane.

The third family is a singlet under D3 and also sits on the PS brane.

15.1 Yukawa Matrices

This section introduces the fields and superpotential of our model. Here we calculate
the Yukawa matrices associated with the massless fields corresponding to the
Standard Model fermions. This section is based on the work in the Appendix of
Kim et al. [318].

We present here a 5D version of a 4D model by Dermisek and Raby in [146]
which itself was based on prior works [96, 139, 140, 216, 325]. Our purpose is
to illustrate how such a 4D model could be placed into a 5D context and what
advantages can be gained from the use of the extra dimension.

In using the extra dimension, we have separated the fields on the PS brane
from the important mass parameter M� D M0.1 C ˛X/ which gives much of the
distinction between the particle types. There are matter fields on the PS brane, and
bulk matter fields which mediate between these brane fields and the SO(10) breaking
M� VEV in such a way to give us the desired Yukawa matrix elements.

The states are placed as follows. In the bulk, we have eight matter hypermulti-
plets, forming four doublets under D3 and transforming as 16s under SO(10). Each
of these hypermultiplet doublets has a different parity under the orbifold. The Higgs,
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Table 15.1 Bulk fields Field PS Symm D3 Symm

16 D
 
 CC

 c
C�

!  
.4; 2; 1/

.4; 1; 2/

!
2A

16 D
 
 

��

 c
�C

!  
.4; 2; 1/

.4; 1; 2/

!
2A

160 D
 
 0

C�

 c 0

CC

!  
.4; 2; 1/

.4; 1; 2/

!
2A

160 D
 
 0

�C

 c 0

��

!  
.4; 2; 1/

.4; 1; 2/

!
2A

e16 D
 e �C

e c
��

!  
.4; 2; 1/

.4; 1; 2/

!
2A

e16 D
 e 

C�

e c
CC

!  
.4; 2; 1/

.4; 1; 2/

!
2A

f160 D
 e 0

��f c 0

�C

!  
.4; 2; 1/

.4; 1; 2/

!
2A

f160 D
 e 0

CC

f c 0

C�

!  
.4; 2; 1/

.4; 1; 2/

!
2A

10 D
 
HCC

Hc
C�

!  
.1; 2; 2/

.6; 1; 1/

!
1A

10 D
 

H��

Hc
�C

!  
.1; 2; 2/

.6; 1; 1/

!
1A

as before, is contained inside a 10 hypermultiplet of SO(10). These fields are listed
in Table 15.1. On the SO(10) brane there is only the mass parameter M�, which is a
singlet under D3 and is a mix of singlet and X under SO(10):M� D M0.1C˛X/.3 On
the Pati-Salam brane, we have three sets of left- and right-handed matter fields. Two
of these sets form a doublet under D3. In addition, there are several extra fields: �a,e�a, A, A15, ˚L, and ˚R. Of these extra fields, those with subscript a are D3 doublets.
The rest are 1A save A which is 1B under D3. All of these extra fields get nonzero
VEVs except for he�1i D 0. All extra fields are SO(10) singlets, save A15 which is an
SU(4) adjoint and gets a VEV hA15i D ˝

A015
˛
.B � L/. The PS brane fields are listed

in Table 15.2.

3The SO.10/ breaking mass term, M�, can be due to an additional 16; 16 which obtain VEVs in

the right-handed neutrino direction and couple, for example, as follows, e16ah16 16i160

a.
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Table 15.2 PS Brane fields Field PS Symm D3 Symm

 .4; 2; 1/ 2A
 c .4; 1; 2/ 2A
 3 .4; 2; 1/ 1A
 c
3 .4; 1; 2/ 1A

� .1; 1; 1/ 2A
e� .1; 1; 1/ 2A
A .1; 1; 1/ 1B
A15 .15; 1; 1/ 1A
˚L .1; 1; 1/ 1A
˚R .1; 1; 1/ 1A

We choose the following superpotential:

W1 D ı.y � �R/ ˚�1 3H c
3 C �2 aH

�
 c0CC


a
˚R C �2 . CC/a H c

a˚L
�

W2 D 16a@y16a C 160
a@y16

0
a C e16a@ye16a C f160

a@y
f160

a C 10@y10

Cı.y/
ne16aM�16

0
a C f160

aM�16a

o

Cı.y � �R/
n
e 0CC

�
a

�
�3A15�a 3 C �4A15e�a a C �5A a

�
˚L

C

f cCC

�
a

�
�3A15�a 

c
3 C �4A15e�a 

c
a C �5A 

c
a

�
˚R

o
(15.1)

There are 12 U(1) symmetries associated with our superpotential. We choose
to parametrize these by allowing the following 12 fields to be charged each under

different U(1)s:  3,  c
3 , HcC�, M�,


e 0��
�
a
,

f c0�C

�
a
,
�e �C


a
, ˚L, A15. After

specifying the U(1) symmetries of the above fields, the U(1) transformations of all
other fields are uniquely defined. There are in addition 2 Z2 symmetries. First is
the Z2 orbifold parity under y ! �y. The transformations of the bulk fields under
this symmetry have already been defined in Table 15.1. In addition, let the rest of
the independent fields:  3,  c

3 , M�, ˚L, A15 be even under this symmetry. There is
also a Wilson line which breaks SO.10/ to PS as defined in Sect. 14.4. The second
Z2 involves a sign ambiguity in the transformation of ˚R. Under a given symmetry,
if ˚L ! ei˛˚L, then the superpotential terms imply that ˚R ! ein�ei˛˚R with
n D 0; 1. We choose to require that n D 1 here in order to forbid terms created by
the replacement of ˚L by ˚R or vice-versa. We also assume that h˚Li =M� 
 1 so
that replacements like ˚L ! ˚2

R are negligible.4 Let the 12 independent fields be

4Such terms given by the substitution ˚L ! ˚2
R or ˚R ! ˚2

L would lead to a Yukawa matrix
structure different from the one desired and so should be forbidden by some symmetry.
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uncharged under this symmetry. We require all of these symmetries just listed to be
symmetries of the theory so as to forbid unwanted extra terms in the superpotential.

The superpotential has a left-right symmetry, under which  3 $  c
3 ,  $  c,�

16

16

�
$
�
160
160

�
,

 e16
e16

!
$
 f160
f160

!
, ˚L $ ˚R. This symmetry, which commutes

with the family D3 symmetry, is broken spontaneously by the VEVs of ˚L and ˚R,
which we require to be slightly different. This difference is encapsulated by a small
parameter �:

h˚Ri D h˚Li .1C �/: (15.2)

We now turn to the equations of motion for the left-handed states:

@W

@
�
 ��


a

D 0 H) @y . CC/a D 0 (15.3)

@W

@
�
 0�C


a

D 0 H) @y
�
 0C�


a

D 0

@W

@

e C�

�
a

D 0 H) @y
�e �C


a

C ı.y/M�

�
 0C�
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Cı.y � �R/ ��3A15�1 3 C �4A15e�2 2 � �5A 1
�
˚L D 0

Solving these equations leads to knowledge of the overlap between the massless
fields and the original fields in the Lagrangian. The following relationships only
have the massless components on the right hand sides of the equations. (We have
replaced the brane fields by their VEVs)

�
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. CC/1 � � 1

M�

�
�3 hA15i h�1i 3 C �4 hA15i

˝e�2
˛
 2 � �5 hAi 1

� h˚Li

. CC/2 � � 1
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�
�3 hA15i h�2i 3 C �4hA15ihe�1i 1 C �5 hAi 2

� h˚Li

where

"��.y/ �

8̂
<̂
ˆ̂:

C1 for y 2 Œ�2�R;��R�
�1 for y 2 Œ��R; 0�
C1 for y 2 Œ0; �R�
�1 for y 2 Œ�R; 2�R�

The equations for the right-handed states can be obtained from the left-right
symmetry present in the model. We list the most important of these equations:

�
 c0CC


1

� � 1

M�

�
�3 hA15i h�1i c

3 C �4 hA15i
˝e�2
˛
 c
2 � �5 hAi c

1

� h˚Ri
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�
�3 hA15i h�2i c

3 C �4hA15ihe�1i c
1 C �5 hAi c

2

� h˚Ri

(15.5)

The three  i fields span the space of the left-handed massless states. Because
the other fields which we’ve integrated out have massless components, the kinetic
energy and gauge interaction terms for the  i fields are no longer orthonormal. The
same is true for the  c

i states by the left-right symmetry. We will discuss the effects
of rotating and rescaling these fields to an orthonormal basis later.

We replace the . CC/a and
�
 c0CC


a

fields in W1 by their corresponding massless
parts in order to get the low energy Yukawa matrices. The result5:

Yu D
0
@

0 "0 "�
�"0 Q" "

"� " 1

1
A� (15.6)

Yd D
0
@
0 "0 "��

�"0 Q" "�

"� " 1

1
A�

Ye D
0
@

0 �"0 3"�
"0 3 Q" 3"

3"�� 3"� 1

1
A�

5We have chosen to use the notation found in [146] to ease comparison between prior works and
our own.
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Definitions follow for these variables, where we have used M� D M0.1 C ˛X/,
h˚Ri D h˚Li .1 C �/, and have added factors of the cutoff scale in order to make
the couplings �i all dimensionless. We have also assumed � 
 1 and ˛ � O.1/.

Q" � �2�4
˝
A015
˛ ˝e�2

˛ h˚Li2
3�1M3�M0

4˛

.1C ˛/.1 � 3˛/ (15.7)
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�1M2�M0
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" � �9�3 h�1i
�2
˝
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˛ h˚Li2

3�1M3�M0

1

.1C ˛/

� � h�2i
h�1i

� � 1C ˛

1 � 3˛

� � �1

s
2Mc

�M�

These Yukawa matrices are the same as those found in [216], except for the (1,3)
and (3,1) elements. It has been shown in [136] that (1,3) elements are needed in
models of this kind in order to fit sin 2ˇ. The Yukawa matrices are identical to those
in [146]. Note, the parameter  / � or the small amount of left-right symmetry
breaking. It is this small parameter which allows mu < md even though mt  mb. In
Fig. 15.1 we list the lowest-order diagrams which give the Yukawa matrices. Each
diagram is followed by the element(s) to which it contributes. In our analysis we
have used a basis in which the massless matter fields are not orthonormal. Rotation
and rescaling to a canonical orthonormal basis would in general introduce changes
to the Yukawa matrices. We have neglected effects from this change of basis, and
our justification for this is the following. Were a fit to be done with these effects
included, the input Yukawa parameters would compensate by changing their values.
We assume that the input parameters could compensate to the extent that we would
obtain essentially the same fit in this case as in the case we have presented here
without these extra effects. We leave it to further research to explore whether this
assumption is a good one.
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Fig. 15.1 Effective Yukawa mass operators. This figure is reproduced from the appendix of [318]
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Summary

In this chapter we have constructed a 5D SO.10/ orbifold SUSY GUT which
reproduces the Yukawa matrices discussed earlier in Sect. 10.3. SO.10/ symmetry
breaking and Higgs doublet-triplet splitting is accomplished via a Wilson line which
breaks SO.10/ to the Pati-Salam gauge symmetry. Then PS is broken further to
the SM gauge group via a Higgs VEV on the PS brane, [317]. The three families
of quarks and leptons were placed on the PS brane. Hence proton decay due to
dimension 6 operators is suppressed. In addition, dimension 5 baryon and lepton
number violating operators are not generated via color triplet Higgs exchange.
Finally the theory preserves an R parity. Thus proton decay rates are severely
suppressed in this model.

Gauge coupling unification is satisfied with threshold corrections due to
K-K modes at the compactification scale. Moreover, Yukawa unification with a D3
family symmetry allows for a very predictive theory. Finally, the small  parameter,
Eq. (15.7), which is necessary to understand why mu=md < 1, while mt=mb  1 is
due to the left-right symmetry breaking VEV of ˚L;R, Eq. (15.2).



Chapter 16
An E6 Orbifold GUT in 5D

In this section we construct a novel 5D orbifold GUT with an E6 gauge symmetry.
We take the 5D gauge field, given by .V; ˙/, in the adjoint representation (78) of
E6. In addition to this we add a matter hypermultiplet .27 C 27/.

We define two orbifold parities

P D exp.�iQZ=3/ � PF ; P0 D expŒ3�i.B � L/=2� � P0
F ; (16.1)

which break the E6 via P to SO10 and then via P0 to PS.1 QZ is the abelian charge in
E6 commuting with SO10, normalized such that the 27 decomposes to 161C10�2C
14, and PF;P0

F are appropriate discrete flavor charges. (For explicit definition of the
parities in the corresponding string model, see Sect. 20.4.) It is easy to obtain the
following projections to .CC/modes, where the first step follows from P alone and
the second follows from the subsequent action of P0,

V D 78 ! 45 ! adjoint of PS ;

˙ D 78 ! 16 C 16 ! NQ3 C �c ;

27 ! 16 ! Q3 ;

27 ! 10 ! H : (16.2)

In this equation, we have identified the third family of quarks and leptons as well
as the MSSM Higgs-doublet pair (H D Hu C Hd where Hu and Hd are the MSSM
Higgs doublets responsible for the up- and down-type quark/charged lepton masses),

NQ3 D .4; 1; N2/; Q3 D .4; 2; 1/; H D .1; 2; N2/: (16.3)

1In this breaking scheme, the brane at y D 0 has an SO.10/ symmetry, whereas the brane at
y D �R has an SU.6/ � SU.2/R symmetry. The overlap is Pati–Salam. See Fig. 16.1.

© Springer International Publishing AG 2017
S. Raby, Supersymmetric Grand Unified Theories, Lecture Notes in Physics 939,
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As a consequence of the fact that the third family and Higgs doublet come
from the bulk gauge and 27 hypermultiplets we obtain a gauge-Yukawa unification
relation,

�t D �b D �	 D ��	 D g4D �
p
4�˛GUT ; (16.4)

where g4D is the 4D gauge coupling constant at the compactification scale. This
relation can be seen by inspecting the 5D bulk gauge interaction

Z �R

0

dx5
�
27˙ 27

�
! g4D

NQ3 H Q3 ; (16.5)

where g4D D g5Dp
�R

.
Of course, we then need to spontaneously break PS to the SM via the standard

Higgs mechanism. This can be accomplished when the “right-handed neutrino”
fields in

N� D .4; 1; 2/; �c D .4; 1; 2/ (16.6)

obtain non-vanishing vacuum expectation values (vevs)

h N�i N� D h�ci�c D MPS: (16.7)

We already have one such state but we need more (if only for anomaly cancellation).
Consider the addition of three more 27 hypermultiplets given by 3�.27C27/. Upon
applying the orbifold parities we find

3 � .27 C 27/ ! 2.16/C 16 C 3.10/ ! 2. N�/C �c C 3.C/; (16.8)

where C D .6; 1; 1/. We now have a total of 2. N�C�c/ fields. Note, with one C, one
N�; N�c pair and a superpotential2 given by

W D N� N�C C �c�cC; (16.9)

we can give mass to the color triplets and also break PS to the SM along a D-and
F-flat direction. (The D-flatness condition requires h N�i N� D h�ci�c .) In the end,
however, we must guarantee that the extra N�; N�c; C states obtain mass above the PS
breaking scale.

But what about the first two families? When constructing an orbifold GUT, one
has the option of placing the first two families in the bulk or on either brane. One
of the main considerations is to avoid rapid proton decay due to gauge exchange
and another is to generate a hierarchy of fermion masses. If the compactification

2This superpotential could, in principle, be localized on the SO.10/ brane.
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Fig. 16.1 5D E6 orbifold GUT model with bulk and brane states. The bulk gauge symmetry is
broken to SO10 on the end of world brane at x5 D 0 and to SU6 � SU2R at x5 D �R. The massless
sector of the 4D effective theory has a PS gauge symmetry. In addition, the bulk contains four
hypermultiplets, and the SO10 brane contains two spinor representations, giving rise to the first
two matter families. Reprinted from Nuclear Physics B 704, T. Kobayashi, S. Raby, R.-J. Zhang,
“Searching for realistic 4d string models with a Pati–Salam symmetry. Orbifold grand unified
theories from heterotic string compactification on a Z6 orbifold,” Page 10, Copyright (2005), with
permission from Elsevier

scale is much smaller than the GUT scale, say Mc 
 MGUT, then it is not possible
to place the first two families on the SO10 brane. It would however be fine to place
them in the bulk or on the SU6 � SU2R brane, since in the first case the families are
in irreducible representations with massive KK modes, while in the latter case one
family is contained in two irreducible representations .15; 1/C.6; 2/.3 In both cases,
gauge exchange takes massless quarks and leptons into massive states. Hence there
is no problem with proton decay. If however Mc � MGUT then one can place the
first two families on either brane. Unfortunately, in string theory, we do not get to
choose easily where to place the families. It is determined by the choice of vacuum.
In the heterotic string version of the model we find two families sitting on the SO10

brane, as in Fig. 16.1.

3In the latter case we would need to give mass to the extra states which are not in the MSSM.



Chapter 17
SUSY Breaking in 5D

Scherk-Schwarz Symmetry Breaking

The 5D N = 1 SUSY theory, equivalent to N = 2 in 4D, has a non-Abelian SU.2/R
symmetry in which the two gauginos, .�1; �2/, in the N = 2 vector supermultiplet
and the two scalars, .h; hc�/, in the N = 2 hypermultiplet transform as doublets,
while the other states transform as singlets. It was shown that SUSY can be broken
via orbifolding and using the holonomy associated with a U.1/R subgroup of SU.2/R
[326, 327]. In early versions of this mechanism, the SUSY breaking scale was linked
to the compactification scale which is not consistent with SUSY as a solution to
the gauge hierarchy problem. However, recently a variation of the Scherk-Schwarz
mechanism has been shown to allow for a SUSY breaking scale much below the
compactification scale [314, 328]. In addition, it has also been shown in [329, 330]
that this mechanism is equivalent to radion F-term SUSY breaking or by SU.2/R
Wilson line breaking in [331]. For a nice review on symmetry breaking in extra
dimensions, see [332].

Following [328], consider a simple example on M4 � S1=Z2 with the gauge and
Higgs multiplets in the 5D bulk. We have the N = 1 4D superfields, fV; ˙g in the
adjoint representation of SU.5/ for the 5D gauge multiplet and two sets of Higgs
hypermultiplets, fH1; Hc

1I H2; Hc
2g with H1; H2 2 5 and Hc

1; H
c
2 2 N5. The parity

under y ! �y is given by

P W
�
V
˙

�
.x�; y; �/ !

�
V
˙

�
.x�; �y; �/ D

�
V

�˙
�
.x�; y; �/ (17.1)

 
H1 H2
Hc�
1 Hc�

2

!
.x�; y; �/ !

 
H1 H2
Hc�
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!
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D
 

H1 �H2
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1 Hc�
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!
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Note, in the Higgs sector we have an SU.2/H symmetry rotating H1 $ H2. We
choose the holonomy under the shift symmetry to be an element of U.1/R �U.1/H.
We have TR D e�2� i˛�2 and TH D e2� i��2 where ˛ � � � 10�13 such that ˛=R �
�=R are of order the weak scale. In addition we have the GUT breaking holonomy,
T D .C C C � �/ 2 SU.5/. We then have

T W
�
AM

�

�
.x�; y/ !

�
AM

�

�
.x�; y C 2�R/ D

�
T AM T
T � T

�
.x�; y/ (17.2)

�
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�
.x�; y/ !

�
�1
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�
.x�; y C 2�R/ D TR

�
T �1 T
T �2 T

�
.x�; y/

 
h1 h2
hc�1 hc�2

!
.x�; y/ !

 
h1 h2
hc�1 hc�2

!
.x�; y C 2�R/

D TR

 
T h1 T h2
T hc�1 T hc�2

!
.x�; y/ TH

 Qh1 Qh2
Qhc�1 Qhc�2

!
.x�; y/ !

 Qh1 Qh2
Qhc�1 Qhc�2

!
.x�; y C 2�R/

D
 
T Qh1 T Qh2
T Qhc�1 T Qhc�2

!
.x�; y/ TH :

The fields in the MSSM with P; P0.D TPPF/ D .CC/ (where the parity of
Higgs fields under PF is �1) are the only ones with zero modes (ignoring the SUSY
breaking effects). These include the MSSM gauge sector, V.CC/, and the Higgs
doublets in Hu D H1.CC/; Hd D Hc

2.CC/. All other fields have only massive KK
modes. When one includes the TR; TH holonomies, then the mode expansion for the
gauginos and Higgses are given by

 
�1

�2

!
.x�; y/ D

1X
nD0

e�i˛�2y=R

 
�1n.x�/ cosŒny=R�
�2n.x�/ sinŒny=R�
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h1 h2
hc�1 hc�2

!
.x�; y/ D

1X
nD0

e�i˛�2y=R

 
h1n.x�/ cosŒny=R� h2n.x�/ sinŒny=R�
hc�1n.x�/ sinŒny=R� hc�2n.x�/ cosŒny=R�

!
ei��2y=R

 Qh1 Qh2
Qhc�1 Qhc�2

!
.x�; y/ D

1X
nD0

 Qh1n.x�/ cosŒny=R� Qh2n.x�/ sinŒny=R�
Qhc�1n.x�/ sinŒny=R� Qhc�2n.x�/ cosŒny=R�

!
ei��2y=R:

Substituting the mode expansions into the 5D action and integrating out the heavy
modes one obtains the 4D effective field theory below the compactification scale. It
contains the MSSM gauge and Higgs sectors. In addition, it contains the following
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mass terms

L D �1
2

˛

R
.�a0�

a
0 C h:c:/ �

�
˛2

R2
C �2

R2

�
.jhuj2 C jhdj2/ (17.3)

C2˛�
R2
.huhd C h:c:/ � �

R
.Qhu Qhd C h:c:/:

These are the soft SUSY breaking mass terms for gauginos, M1=2 D ˛
R , Higgses,

m2hu D m2hd D ˛2C�2
R2

, and B� D 2˛�

R2
with the supersymmetric � term given by

� D � �

R . Similar soft SUSY breaking mass terms can be obtained for squarks and
sleptons, IF placed in the 5D bulk.

Gaugino Mediation

Consider a 5D orbifold GUT with the gauge and Higgs multiplets placed in the 5D
bulk and the matter multiplets placed on the fixed point at y D 0 [333–335]. On the
y D �R fixed point we can locate the soft SUSY breaking sector of the theory with
a chiral field �hid which obtains a non-vanishing F term, Fid. Then at zeroth order,
SUSY breaking is transmitted to only the gauge and Higgs sectors of the theory,
generating effective gaugino and Higgs terms of the form

�Lbrane � `5

`4
f
�Z

d2�
�hid

M
W˛ W˛ C h:c:

�
C
 Z

d4�
�
�
hid

M2
Hu Hd C h:c:

!

C
Z

d4�
�
�
hid�hid

M3
.H�

uHu C H�
dHd C HuHd C h:c:/g (17.4)

where M is the cut-off and `D D 2D�D=2� .D=2/ is a geometrical loop factor for
D dimensions.1 In addition there are expected to be direct interactions between the
hidden sector brane at y D �R and the visible sector brane at y D 0 of the form

�Lbrane � `5

`4
e�M�R

Z
d4�

�
�
hid�hid

M2
�
�
obs�obs: (17.5)

These are suppressed by the factor e��M=Mc D e�M L where Mc D 1=R is the
compactification scale and L D �R is the volume of the extra dimension.

1The factor `5
`4

are supposed to take into account the relative size of loop corrections to the 4D vs.
5D Lagrangian.
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Note, we have2 g2 D g25=L D � `5
L M and the gauge field strength,W˛ , and the Higgs

fields, Hu;d are normalized with canonical kinetic terms in 5D. Thus the correctly

normalized Higgs fields in 4D are given by H5D
u;d D H4Du;d

L1=2
. Hence when the F term

of the hidden sector field, Fhid, is non-zero we obtain the soft SUSY breaking mass
terms and � term given by

M1=2; � � Fhid

M

1

LM
; B�; m2Hu

; m2Hd
�
�
Fhid

M

�2
1

LM
: (17.6)

We also obtain direct soft SUSY breaking mass terms for visible sector fields
given by

�m2vis � e�M L

�
Fhid

M

�2
(17.7)

from the contact term of Eq. (17.5). These can induce flavor violating effects and
thus should be suppressed. Given g2 � � � 1, we have L M � 20 and we obtain
a suppression by the factor M L e�M L � 4 � 10�8 which is significant. The more
important contribution to visible sector soft SUSY breaking masses comes from
gaugino loops which are expected to generate scalar masses and A terms of order

�m2vis � g2

16�2
M2
1=2; �Avis � g2

16�2
M1=2: (17.8)

To summarize, the GUT scale boundary conditions expected from gaugino
mediation are given by

• Gaugino masses: M1 D M2 D M3 D M1=2,
• Higgs masses: m2Hu

; m2Hd
� M2

1=2; �; B � M1=2,

• Squark and slepton masses: m2 � M2
1=2

16�2
,

• A terms: A � M1=2

16�2
.

Anomaly Mediation

The last transmission mechanism for SUSY breaking is known as anomaly media-
tion and was proposed in [336–338]. In anomaly mediation the hidden and visible
sectors are again on separate branes, but now neither the gauge or Higgs sectors
overlap both branes. In the terminology of [336], the hidden sector brane is

2By Naive Dimensional Analysis [NDA] it is assumed that the effective 5D gauge coupling is given
by g25 	 � `5

M with � 	 1 corresponding to strong coupling.



17 SUSY Breaking in 5D 203

sequestered from the visible brane. Thus supersymmetry is broken on the hidden
sector brane, but locally on the visible brane SUSY is preserved. Following the
discussion of [336], let us consider the general Lagrangian for supergravity coupled
to matter given by (in flat superspace notation)

L D p�gf
Z

d4� f .Q�; e�V Q/ ˚� ˚ C
Z

d2�.˚3 W .Q/C 	.Q/ W ˛W˛/C h:c:

�1
6
f .Qq�; Qq/.R C vector auxiliary terms + gravitino terms /g; (17.9)

where Q is a chiral superfield for visible matter with scalar component, Qq, and the
vector superfield, V , with field strength, W˛. R is the Ricci curvature scalar and 	 is
the gauge kinetic function. The field ˚ is a flat space chiral auxiliary field, in the
Bagger and Wess supergravity formalism [120], given by

˚ D 1C F˚ �
2: (17.10)

The function

f � �3 m2Pl e�K =3m2Pl ; (17.11)

where K is the Kähler potential.
The supergravity Lagrangian in the above Jordan form has a field dependent

coefficient of the Ricci scalar curvature, R. By making a Weyl transformation of the
metric, i.e.

g�� ! eK =3m2Pl g�� (17.12)

and integrating out auxiliary fields one obtains

L D p�gfm
2
Pl

2
R C KNij.Qq�; Qq/ D� Qqi� D� Qq j � V.Qq�; Qq/ (17.13)

�	.Qq/.F�� F�� C iF�� QF��/C h:c:C fermion termsg

where

V D eK =m2Plf.@W
@Qqi C W

m2Pl

@K

@Qqi /K
�1iNj .

@W �

@Qqj� C W �

m2Pl

@K

@Qqj� /� 3
jW j2
m2Pl

g (17.14)

Cg2

2
.
@K

@Qq TA Qq/2:
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Note, the solution of the ˚ auxiliary field is given by

F�̊ D W

m2Pl
eK =3m2Pl : (17.15)

Assuming that the visible sector and hidden sectors are located on distant branes,
we have

f D �3m2Pl C fvis C fhid; (17.16)

W D Wvis C Whid;

	 W 2 D 	vis W
2
vis C 	hid W

2
hid

where the visible and hidden sector functions only depend on the respective fields.
Supersymmetry breaking is assumed to occur in the hidden sector via the F term of
a superfield,˙ , with expectation value

h˙i D � C �2 �2
H : (17.17)

In the flat space limit, once supersymmetry is broken, then the gravitino mass is
given by m3=2 D eK =2m2Pl jW j

m2Pl
. But

F˙
mPl

� W

m2Pl
� F˚ D �2

H

mPl
: (17.18)

Therefore, the auxiliary field F˚ also obtains a SUSY breaking VEV. Nevertheless,
visible sector fields don’t feel SUSY breaking at the tree level. This is because the
auxiliary field˚ can be rescaled away by redefining the visible sector field such that

Q˚ ! Q: (17.19)

However, although this redefinition of the superfield Q is valid classically, it is
violated by quantum corrections. In fact, this transformation corresponds to a scale
transformation and even though the theory may be classically scale invariant, in
order to renormalize the theory a renormalization scale, �, must necessarily be
defined. Thus, for example, at tree level we have the gauge coupling given by

	0 D 1

g20
(17.20)

but after renormalization we have

1

g2
D 	

�
�

�UV˚

�
D 1

g20
C 2b0 ln

�
�

�UV˚

�
(17.21)
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such that the beta function for the gauge coupling, g, is given by

ˇ.g/ � dg

d ln�
D �b0 g

3 C : : : (17.22)

with b0 D .3C2.G/�TR/=16�2 at one loop. Placing the renormalized gauge kinetic
function 	 back into the supergravity Lagrangian, Eq. (17.13) and using Eq. (17.10),
we find a gaugino mass term given by3

M1=2 D �b0 g
2 m3=2: (17.23)

The anomaly mediated contribution to gaugino masses in [338] allows for Planck
scale expectation values in the hidden sector. Here the authors find corrections to
Eq. (17.23) given by

M1=2 D � g2

16�2

�
.3C2.G/ � TR/m3=2 C .C2.G/ � TR/Ki F

i C 2TR
dR
.log detK j00R/i Fi

�

(17.24)

where K is the Kähler potential and prime indicates derivatives with respect to
visible-sector fields restricted to the representation, R, with dimension, dR. A sum
over all matter fields in representations R is implicit.

Fi D �eK =2K ij�.Wj C Kj W /�: (17.25)

Now let’s assume the sequestered form of the Kähler potential

K D �3 log

�
�1
3
Q� Q C f .H�;H/

�
(17.26)

with Q and H denoting visible and hidden-sector chiral superfields, respectively.
Moreover, assuming that the VEVs of visible-sector fields vanish we have

1

dR
log detK j00R D 1

3
K : (17.27)

We then find

M1=2 D � g2

16�2
.3C2.G/� TR/

�
m3=2 C 1

3
Ki F

i

�
: (17.28)

3The gauge kinetic term is usually defined with a factor of 1/4 which then gives the standard
normalization of the gauge coupling constant.
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As an example of the possible effect of the additional term, consider a “no-scale”
model, with Kähler potential

K D �3 log

�
T C T� � 1

3
Q� Q � 1

3
H� H/

�
(17.29)

with the modulus4 T in the hidden-sector. If supersymmetry breaking is dominated
by the F component of T, and a constant is added to the superpotential to cancel the
cosmological constant, we have

KT FT D �3 m3=2 (17.30)

and the anomaly-induced gaugino mass vanishes. With more than one supersymme-
try breaking VEV near the Planck scale the anomaly-induced gaugino masses might
be suppressed.

Scalar masses are also generated at two loops. The Wilsonian effective
Lagrangian (i.e. obtained by integrating out all momentum from � to �UV ) is
given by

Leff D
Z

d4�Z

�
�

�UV˚
;

�

�UV˚�

�
Q� e�V Q (17.31)

C
Z

d2� .Y0 Q
3 C 	

�
�

�UV˚

�
W 2
˛ /C h:c::

Now using

ln Z

�
�

�UV.˚ ˚�/1=2

�
D lnZ

�
�

�UV

�
� 1

2
F˚�

2 d lnZ

d ln�
.
�

�UV
/C h:c: (17.32)

C1

4
jF˚ j2�2 N�2 d2 lnZ

d.ln�/2
.
�

�UV
/

or

lnZ

�
�

�UV j˚ j
�

� ln Z

�
�

�UV

�
� 1

2
�.g; Y/ .F˚�

2 C h:c:/ (17.33)

C1

4
jF˚ j2�2 N�2

�
@�

@g
ˇg C @�

@Y
ˇY

�
;

4Perhaps T is a volume modulus determining the size of the extra dimension.
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where we used the renormalization group functions

�.g; Y/ � @ ln Z

@ ln�
; ˇg � @g

@ ln�
; ˇY.g; Y/ � @Y

@ ln�
: (17.34)

The linear terms in F˚ can be scaled away by the redefinition

expf1
2

lnZ.
�

�UV
/ � 1

2
�.g; Y/F˚�

2gQ ! Q (17.35)

leaving only the quadratic terms in F˚ . We then have

Z

�
�

�UV j˚ j
�

D 1C 1

4
jF˚ j2�2 N�2

�
@�

@g
ˇg C @�

@Y
ˇY

�
: (17.36)

Again, plugging in ˚ D 1CF˚ �2 or ln˚ D F˚ �2 and performing the � integrals
we find the scalar mass squared

m2Qq.�/ D �1
4

jF˚ j2
�
@�

@g
ˇg C @�

@Y
ˇY

�
: (17.37)

This is a two loop result since the anomalous dimensions, � and the beta functions
ˇg; ˇY are all one loop results. Using the general forms

� D c0g
2 C d0Y

2; ˇg D �b0g
3; ˇY D Y.e0Y

2 C f0g
2/ (17.38)

we obtain the scalar mass squared

m2Qq D 1

2
fc0b0g4 � d0Y

2.e0Y
2 C f0g

2/gjF˚ j2: (17.39)

Note, the constant c0 > 0 and b0 > 0 for asymptotically free gauge theories, but
b0 < 0 for infra-red free gauge theories. Thus in the MSSM, since right-handed
sleptons only have U.1/Y gauge interactions, their mass squared is negative. This is
a problem which however can be fixed with additional interactions, such as D terms
from additional low energy U.1/ gauge interactions, see [339, 340].

Finally, cubic scalar interactions are generated from the re-scaled cubic terms.
These generate A terms given by

Aijk D 1

2
.�i C �j C �k/ Yijk F˚: (17.40)
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Mirage Mediation and Precise Gauge Coupling Unification

In general orbifold GUT models, it is possible to have several different SUSY
breaking mechanisms working simultaneously. For example, it is possible that the
dominant SUSY breaking effect gives visible sector scalars a large mass of order the
gravitino mass, m3=2 � F

mPl
. However there are additional SUSY breaking VEVs,

F0, which give gauginos mass, but suppressed by loop effects. This happens because
the SUSY breaking F term only enters the gauge kinetic function at one loop. We
then obtain M1=2 � F0

16�2mPl
. It is also possible that the contribution to the gaugino

mass due to anomaly mediation can be of the same order.5 We then have mirage
mediation, Eq. (10.5), with

Mi D
�
1 � g2Gbi˛

16�2
log

�
MPl

m16

��
M1=2 : (17.41)

It has been shown that if gluino masses are lighter than obtained in the case of
universal gaugino masses, see [198, 341], that precision gauge coupling unification
[PGCU] is possible, i.e. �3 D 0. In PGCU it is also possible to have a well-tempered
dark matter candidate [198, 238]. Thus the question arises, what physics at the
GUT scale naturally gives �3 D 0? In the next section, we show that PGCU can
be obtained with non-local Wilson line symmetry breaking. In this case, all gauge
couplings unify (up to small corrections) at the compactification scale. Said another
way, if the GUT symmetry is broken via non-local Wilson lines, then the low energy
theory requires either mirage mediation or general gauge mediation with lighter
gluinos!

5Of course, there could also be additional SUSY breaking contributions to gaugino masses, such
as gauge-mediated terms.



Chapter 18
SUSY GUTs in 6D: Precise Gauge Coupling
Unification

In the previous chapter we argued that precise gauge coupling unification [PGCU],
i.e. the absence of threshold corrections at the GUT scale, requires certain specific
soft SUSY breaking masses at the weak scale. In particular, lighter gluinos than
expected from unification of gaugino masses. In this chapter we argue that non-
local GUT breaking will, in general, eliminate one-loop GUT threshold corrections.
This is because the compactification scale is the scale of GUT symmetry breaking
[342–344]. In this chapter (based on [345]) we present a 6D model with SU.6/
gauge symmetry and N=2 supersymmetry. In terms of 4D language, such a 6D
theory with N=2 SUSY contains one vector adjoint and three chiral adjoints.
The model has gauge-Higgs unification with the Higgs doublets coming from
one of the chiral adjoints. The group SU.6/ is broken to SU.5/ � U.1/X via
orbifold boundary conditions. Then SU.5/ is broken to the Standard Model gauge
group and, at the same time, Higgs doublet-triplet splitting is accomplished
by a Wilson line. The two extra-dimensions are compactified on an orbifold
that can be characterized as a sphere with a cross-cap (topologically equivalent
to the manifold RP2), as described in [342–344]. Quarks and leptons can be
in the bulk (or localized at the fixed points), and their Yukawa couplings to
the Higgs are localized at the orbifold fixed points which only retain an N=1
SUSY in 4D (see for example [313, 346] where this phenomenon has been
discussed).

It is worthwhile to explain why we choose to compactify the two extra spatial
dimensions on RP2. It has to do with GUT symmetry breaking via Wilson
lines. In previous chapters in 5D we compactified the extra dimension on a line
segment y 2 Œ0; �R�. For example, in the case of SU.5/, the discrete Wilson
line breaks SU.5/ spontaneously to the SM gauge group, SU.3/ � SU.2/ � U.1/.
However the gauge symmetry on the y D �R brane is locally broken to the
SM. We can also consider a 6D GUT where we compactify the extra two
dimensions on the two dimensional surface of a 3 dimensional sphere. However,
a Wilson line on this surface can be shrunk to a point, i.e. ˘1.S2/ D 0, the

© Springer International Publishing AG 2017
S. Raby, Supersymmetric Grand Unified Theories, Lecture Notes in Physics 939,
DOI 10.1007/978-3-319-55255-2_18
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manifold is simply connected. In order to avoid this possibility let’s define a
space which is topologically equivalent to the surface of the sphere, but has a
non-trivial ˘1. Such a two dimensional surface is RP2 which can be obtained,
without orbifolding, by taking the surface of a 2 sphere and identifying anti-podal
points. Such a space can also be obtained by orbifolding. We first define the 2D
surface as a torus mod a Z2 symmetry. The 2 torus T2 is defined by taking R2

with coordinates x5; x6 and mod out by the discrete translations, T5; T6 such
that

Ti W xi ! xi C 2�Ri; i D 5; 6: (18.1)

Then the Z2 action is given by

Z2 W xi ! �xi; i D 5; 6: (18.2)

This is the first step described in Fig. 18.1. The end result is an orbifold, topologi-
cally equivalent to S2, can be described as the surface of a pillow with four fixed
points. We can now place a Wilson line in either the five or six directions and
use it to break SU.5/ to the SM. Once again the gauge symmetry is explicitly
broken to the SM at one or more of the fixed points. In the case of either
the 5D or 6D example we described, the gauge couplings unify at the cut-off
scale with logarithmic running of differences of the gauge couplings between the
compactification scale and the cut-off, i.e. unification only occurs at the cut-off.
Both of these cases are examples of local GUT breaking. On the other hand,
the manifold RP2, or its orbifold equivalent, is a manifold with ˘1.RP2/ D
Z2. This means that a Wilson line can traverse the manifold along a closed
circle and still not be continuously deformed to a point. As a consequence, this
Wilson line will break the gauge symmetry non-locally on the entire manifold.1

As a result we expect that the compactification scale can be identified with
the 4D GUT scale, since we expect to find precise gauge coupling unification
[PGCU] at Mc. The purpose of this section is to show that indeed, this is the
case.

The details of the orbifold and the symmetry breaking are discussed in Sect. 18.1.
We break the SU.6/ ! SU.5/ � U.1/X using one of the orbifold projections,
locally at the fixed points. We then break the SU.5/ ! SU.3/ � SU.2/ �
U.1/Y using a Wilson line along the fifth and sixth directions. In Sect. 18.5,
we analyze gauge coupling unification in the SU(6) GUT model constructed
on such an orbifold and calculate the GUT-scale threshold corrections in this
scenario. We find that unlike in most popular models of orbifold GUTs, the
couplings do not receive power law corrections at any scale and the logarith-

1Wilson line breaking on a smooth RP2 is certainly non-local breaking. On the orbifold version of
RP2 we shall see that the Wilson line breaking is not completely non-local, although the results, as
we shall show, are consistent with non-local breaking of the GUT symmetry.



18.1 GUT Breaking 211

mic corrections above the largest compactification scale are SU.5/ invariant,
both effects due to the effective N=4 SUSY in 4D. We analyze the GUT-scale
threshold corrections to determine if they are at the required level to match
low energy physics. We point out that an example of an orbifold GUT from
a 6D SU.6/ was considered in [346] with the similar feature of gauge-Higgs
unification. The extra-dimensions were compactified on T2=.Z2 � Z0

2/ and the
authors obtain realistic phenomenology with local GUT breaking. The 6D GUT
theory also had an N=2 supersymmetry. As a consequence, the coefficient of
the effective 6D quadratic power law dependence of the gauge couplings van-
ished. But due to the existence of fixed lines the effective 5D linear dependence
remained.

18.1 GUT Breaking

Real Projective Plane

An N=2 supersymmetric SU.6/ gauge theory in six dimensions is compactified
on an orbifold, shown in Fig. 18.1, as described in Hebecker [342]. The extra
dimensions are compactified on a torus T2 parametrized by (x5, x6). The two
dimensions are also identified to have the periodicity, x.5;6/ D x.5;6/ C 2�R.5;6/,
where R5 and R6 are the radius of the torus along the two directions. Two
discrete symmetries, the rotation Z and a freely acting roto-translation Z 0,
as defined in Eqs. (18.3), (18.4) are modded out. Once the first symmetry is
modded out, the topology of the compact space is that of a 2-sphere with
curvature concentrated at the four conical singularities. The space resembles a
pillow with fundamental group ˘1 D ;. Once the second parity is modded
out, the resulting compact space is equivalent to a projective plane, RP2. It

2πR6

2πR5 πR5

πR6 πR6

πR5/2

F2

F1

Fig. 18.1 The figure shows the manifold at each step of the compactification. After the first step
of orbifolding, the space looks like a pillow with four fixed points denoted by red dots in the center
figure. After the second step of orbifolding as described in [342], this space is equivalent to a real
projective plane. Reprinted from Nuclear Physics B 868, A. Anandakrishnan and S. Raby, “SU(6)
GUT breaking on a projective plane,” Page 629, Copyright (2013), with permission from Elsevier.
This right-hand figure was reproduced from Fig. 1, [342]
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is non-orientable with no boundaries, the curvature is concentrated at the two
fixed points denoted by F1 and F2 and ˘1 D Z2. The non-orientability of the
space can be ascribed to the cross-cap where opposite points on the circle are
identified.2

Z x5 ! �x5; x6 ! �x6 (18.3)

Z 0 x5 ! �x5 C �R5; x6 ! x6 C �R6: (18.4)

We choose to write the particle content of the theory in terms of the 4D language.
There is one vector superfield, V and three chiral superfields, ˙5, ˙6, and ˚ ; all in
the adjoint representation of SU.6/. Using the notation in [346], the bulk action in
the Wess-Zumino gauge is given by:

S D
Z

d6x

(
Tr

"Z
d2�

 
1

4kg2
W ˛W˛

C 1

kg2



˚@5˙6 � ˚@6˙5 � 1p

2
˚Œ˙5;˙6�

�!
C h:c:

#

C
Z

d4�
1

kg2
Tr

"
.
p
2@5 C˙

�
5 /e

�V.�p
2@5 C˙5/e

V

C.p2@6 C˙
�
6 /e

�V.�p
2@6 C˙6/e

V

C˚�e�V˚eV C @5e
�V@5e

V C @6e
�V@6e

V

#)
(18.5)

18.2 SU.6/ ! SU.5/ � U.1/X

The 6D N=2 supersymmetric theory that we start with has an effective N=4
SUSY in 4 dimensions. The action of the above discussed parities can be used
to break the gauge group SU.6/ down to SU.5/ � U.1/X, and at the same time
break N = 4 SUSY to N = 1 SUSY (in 4D) [335]. We can break SU.6/ to
SU.5/ � U.1/X by requiring the fields to transform as illustrated below, under the
two parities.

2It appears that fermions and supersymmetry can be defined on some non-orientable manifolds.
See, for example, some general theorems on Pin manifolds [347–349] and some specific examples
of fermions on M4 ˝ RP2 [350–352].
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Under the parity, Z :

V.�x5;�x6/ D PV.x5; x6/P
�1;

˙5.�x5;�x6/ D �P˙5.x5; x6/P
�1;

˙6.�x5;�x6/ D �P˙6.x5; x6/P
�1;

˚.�x5;�x6/ D P˚.x5; x6/P
�1; (18.6)

Under the parity, Z 0:

V.�x5 C �R5; x6 C �R6/ D V.x5; x6/;

˙5.�x5 C �R5; x6 C �R6/ D �˙5.x5; x6/;

˙6.�x5 C �R5; x6 C �R6/ D ˙6.x5; x6/;

˚.�x5 C �R5; x6 C �R6/ D �˚.x5; x6/: (18.7)

where P = diag.i; i; i; i; i;�i/ breaks the SU.6/ ! SU.5/ � U.1/X. The projection
Z has four fixed points (as shown in Fig. 18.1). The SU.6/ symmetry is explicitly
broken to SU.5/� U.1/X at the three non-(0,0) fixed points. In the next section, we
use a non-local Wilson line to further break SU.5/ to SU.3/� SU.2/� U.1/Y .

Under the combined operation (Z ;Z 0) the components of the fields transform
as follows:

V D

0
BBBBBBB@

.CC/.CC/.CC/ .CC/.CC/ .�C/

.CC/.CC/.CC/ .CC/.CC/ .�C/

.CC/.CC/.CC/ .CC/.CC/ .�C/

.CC/.CC/.CC/ .CC/.CC/ .�C/

.CC/.CC/.CC/ .CC/.CC/ .�C/
.�C/.�C/.�C/ .�C/.�C/ .CC/

1
CCCCCCCA

˙5 D

0
BBBBBBB@

.��/.��/.��/ .��/.��/ .C�/

.��/.��/.��/ .��/.��/ .C�/

.��/.��/.��/ .��/.��/ .C�/

.��/.��/.��/ .��/.��/ .C�/

.��/.��/.��/ .��/.��/ .C�/
.C�/.C�/.C�/ .C�/.C�/ .��/

1
CCCCCCCA
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˙6 D

0
BBBBBBB@

.�C/.�C/.�C/ .�C/.�C/ .CC/

.�C/.�C/.�C/ .�C/.�C/ .CC/

.�C/.�C/.�C/ .�C/.�C/ .CC/

.�C/.�C/.�C/ .�C/.�C/ .CC/
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1
CCCCCCCA

˚ D

0
BBBBBBB@

.C�/.C�/.C�/ .C�/.C�/ .��/

.C�/.C�/.C�/ .C�/.C�/ .��/
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(18.8)

The parity operations (Z ;Z 0) performed on the coordinate space are symme-
tries of the Lagrangian, hence the fields in the Lagrangian must be eigenstates of the
parity operations. A general field ' D fV; ˙5;˙6; ˚g by definition of the manifold,
are periodic functions of x5 and x6.

'.x; x5 C 2�R5; x6/ D '.x; x5; x6/

'.x; x5; x6 C 2�R6/ D '.x; x5; x6/ (18.9)

This allows us to expand them as:

'.x; x5; x6/ D 1p
2�R5R6

C1X
m;nD�1

'.m;n/exp

�
i

�
mx5
R5

C nx6
R6

��
(18.10)

The eigenstates of the parity operations are required to obey:

'˙ḃ.x�;�x5;�x6/ D ˙'˙ḃ.x�; x5; x6/
'˙ḃ.x�;�x5 C �R5; x6 C �R6/ D ḃ'˙ḃ.x�; x5; x6/ (18.11)

which project out even and odd modes that can be written out as:

'
˙ḃ.x; x5; x6/ D 1

4
p
2�R5R6

X
m;n

h
.'.m;n/ ˙ '.�m;�n//ḃ.�1/m�n.'.�m;n/ ˙ '.m;�n//

i

�exp

�
i

�
mx5
R5

C nx6
R6

��
(18.12)

In the above three expressions, ˙ denotes states that are even/odd under the first
parity operation, and ḃ denotes states that are even/odd under the second parity. The
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(0,0) m

n

++ states

(0,0) m

n

+- states

(0,0) m

n

-+ states

(0,0) m

n

-- states

Fig. 18.2 The mode expansion in Eq. (18.12) gives the information about where the various parity
eigenstates exist. Notice that this figure depicts only the positive parts of the (m,n) values while for
the calculations they should be summed over both positive and negative integers. It is clear from
the figure that only the .CC/ fields have zero modes. Reprinted from Nuclear Physics B 868, A.
Anandakrishnan and S. Raby, “SU(6) GUT breaking on a projective plane,” Page 632, Copyright
(2013), with permission from Elsevier

massless modes come only from the CbC (hereafter denoted as ++) parity modes.
They appear in the adjoint representation of SU.5/� U.1/X in V and in the 5 and N5
of SU.5/ in ˙6. These latter contain the MSSM Higgs bosons. The above spectrum
is illustrated in Fig. 18.2.

18.3 SU.5/ ! SU.3/ � SU.2/ � U.1/Y

We now introduce a Wilson line to break the symmetry down to the Standard Model.
A gauge field, AM � P

a A
a
MT

a transforms under a gauge transformation as follows:

AM.x�; x5; x6/ ! UAM.x�; x5; x6/U
� � iU@MU

� (18.13)
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where Ta correspond to the generators of the gauge group.3 Now consider a constant
background gauge field along the fifth and sixth directions:

A5 D 1

4R5
T and; A6 D 1

4R6
T (18.14)

where T is the generator (up to a constant) that breaks SU.6/ down to SU.3/ �
SU.3/� U.1/ given by:4

T D

0
BBBBBBB@

1

1

1

�1
�1

�1

1
CCCCCCCA

(18.15)

Note that the choice of the background gauge fields must obey some strict
constraints. For example, the space group generators obey:

Z 2 D 1; Z 02 D T6 (18.16)

The second condition implies that the action of the parity Z 0 is equivalent to the
holonomy coming from the gauge field along the sixth direction. In addition,

ZZ 0ZZ 0 D T �1
5 (18.17)

Rewriting the above relation of the space group generators as holonomies, we get:

G.Z 2/G.Z 02/ D G.T �1
5 / (18.18)

where we have use the fact that U(1) holonomies commute. Noting that G.T �1
5 / =

G.T5/, we find that the holonomies should obey the condition:

G.T5/ D G.T6/ (18.19)

This statement tells us that the Wilson lines cannot be independent along the two
extra-dimensions.

3This is the remaining gauge symmetry of the supersymmetric theory in the Wess-Zumino gauge.
4This constant background field is consistent with the parity operation A5 ! �A5 with the
additional periodic gauge transformation, such that A0

5 D U.x5/.�A5/U.x5/��iU.x5/@x5U.x5/
� �

A5 and U.x5/ D exp


�i x5R5

T
2

�
is periodic under x5 ! x5 C 2�R5 up to an element of the center

of the group SU.6/ [291].
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The presence of such a background gauge field breaks the gauge symmetry. The
constant background fields introduce a holonomy equal to

W D exp

�
i
I

A5dx5 C i
I

A6dx6

�
: (18.20)

This non-trivial holonomy affects the spectrum of Kaluza-Klein states. In an
equivalent picture [291, 299], the background gauge field can be gauged away
completely by choosing the proper gauge transformation, and in this case, we find
that the gauge condensate vanishes when we choose to redefine fields by the gauge
transformation

U.x5/ D exp

�
i

�
x5
R5

C x6
R6

�
T

4

�
: (18.21)

Nevertheless, the physics remains unchanged, and we determine the change in the
KK spectrum due to the non-trivial holonomy (or Wilson-line).

Under the gauge transformation operator, Eq. (18.21), a generic adjoint field '
transforms as:

' 0.x�; x5; x6/ D U.x5; x6/'.x�; x5; x6/U
�.x5; x6/ (18.22)

which allows us to rewrite the gauge transformed wave function as

' 0.x�; x5; x6/ D ei



x5
R5

C x6
R6

�
I
4 '.x�; x5; x6/ (18.23)

where, I is the eigenvalue of the generator T and '.x�; x5; x6/ is the untransformed
wave function as defined in Eq. (18.10). The periodicity condition Eq. (18.9) of the
fields then becomes:

' 0.x�; x5 C 2�R5; x6/ D P0' 0.x�; x5; x6/P0� � ei
�
2 I' 0.x�; x5; x6/

' 0.x�; x5; x6 C 2�R6/ D P0' 0.x�; x5; x6/P0� D ei
�
2 I' 0.x�; x5; x6/ (18.24)

where P0 � exp
�
i�
2
T
 D diag.i; i; i;�i;�i;�i/.5 The above equation reflects the

constraints on the Wilson lines that was demonstrated in Eq. (18.19). In addition,
now we have re-expressed the Wilson line as a parity operation that breaks
SU.6/ down to SU.3/ � SU.3/ � U.1/. Under the combined parity operations on
the manifold and the non-vanishing background fields along the fifth and sixth
directions, we have achieved gauge symmetry breaking of the SU.6/ group to

5In our case we can now identify G.T5/ D G.T6/ D ei
�
2 I . There is, however, an alternative

possibility with G.T5/ D G.T6/ D 1 and G.Z 02/ D 1. This is the possibility discussed in the
paper by Hebecker [342]. This choice leads to additional massless vector-like exotics which we
avoid in our analysis.
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[SU.3/�SU.2/�U.1/Y] �U.1/X . The SU.5/GUT breaking that we have described,
although via a Wilson line on a manifold with ˘.1/ D Z2, is local, due to our
choice of holonomy on the torus. As a result there is non-trivial U.1/ gauge flux
localized at the fixed point F2 (Fig. 18.1). Thus the two fixed points have different
local symmetries. F1 is invariant under SU(5) � U(1)X, while F2 is only invariant
under [SU.3/� SU.2/� U.1/Y] �U.1/X.6

We still have to calculate how the mass spectrum changes as a result of the
holonomy due to the gauge field. This can easily be done by looking at the
transformed wave function in Eq. (18.23) and calculating the eigenvalues I of the
generator T. The eigenvalues I can be determined by calculating the commutator
ŒT; '� since ' is in the adjoint representation, of the form:

' D

0
BBBBBBB@

.8; 1/0 .3; N2/�5=3 .3; 1/�2=3

.N3; 2/5=3 .1; 3/0 .1; 2/1

.N3; 1/2=3 .1; N2/�1 .1; 1/0

1
CCCCCCCA

D

0
BBBBBBB@

g X T

NX w Hu

NT Hd b

1
CCCCCCCA

(18.25)

The first line in the above expression shows the quantum numbers of the different
blocks that the adjoint field gets broken into after the orbifold projection and
holonomy. We name them appropriately, so that they can be associated with the
fields that remain massless in the low energy theory, like the gauge bosons, g;w; b
and the Higgs doublets, Hu;Hd; and the fields that obtain mass and do not appear in
the low energy spectrum like the Higgs triplets T; NT and states with exotic quantum
numbers X; NX. The commutator of the generator T with this quantity is calculated
and the eigenvalues of are summarized in Table 18.1.

Eventually, we see that the masses of the states in the KK tower are given by

M2
.m;n/; D .m C I

4
/2

R25
C .n C I

4
/2

R26
(18.26)

6In what follows, we shall ignore any explicit gauge symmetry breaking localized at the fixed point,
F2. This might be due to terms such as � 1

4g2a

R
d4xF��a F��a; a D 1; 2; 3. In the orbifold field theory

these will be suppressed by the volume of the extra dimensions, while in string theories these do
not occur. Moreover, in a smooth RP2 these would not exist.
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Table 18.1 Eigenvalues I of the generator T acting on the various fields (labelled by ) in the
model

g w b X NX T NT Hu Hd

I 0 0 0 2 �2 2 �2 0 0

The massless states are those which are even under both parities and have zero
eigenvalue under the holonomy. These turn out to be only the Standard Model gauge
bosons in V and the Higgs doublets, Hu;Hd coming from the chiral adjoint ˙6.
The three families of quarks and leptons are also assumed to sit at either of the
two fixed points. Any family sitting at F1 will come in complete SU(5) multiplets
(10F C N5F) representations, while at F2, SU(5) relations are not preserved. The
Yukawa couplings are also assumed to be localized at these fixed points. They
require superpotential terms of the form 10F 10F 5˙6 C10F N5F N5˙6 where the indices
are contracted in an obvious way. The SU(5) relation �b D �	 works for the third
family but not for the first two, so the third family could be placed at F1 with the first
two sitting at F2 or in the bulk. Finally, in order to obtain only the Standard Model
gauge symmetry at low energies we need to introduce SU(5) singlets 1C C 1�
with U.1/X charge at the fixed points to spontaneously break U.1/X. This can be
accomplished with a superpotential term of the form S .1C 1� ��2/.

18.4 Proton Decay

Dimension 6 operators for proton decay are suppressed by the inverse power squared
of the smallest compactification scale. We will see that this is near the 4D GUT scale
and thus the proton lifetime is completely consistent with the experimental bounds.
On the other hand, dimension 5 operators for proton decay are only suppressed by
the inverse power of the compactification scale. However, if we assume that quarks
and leptons only couple to the chiral adjoints containing the Higgs fields, there are
no dimension 5 operators for proton decay generated when integrating out the color
triplet Higgs fields. This can be attributed to an unbrokenZR

4 symmetry7 [353] where
the superpotential has charge 2, families have charge 1, f˙5;6; 1

C; 1�g have charge
0, and fS; ˚g have charge 2.

18.5 Threshold Corrections

4D SUSY GUTs require extra states to contribute a small amount of threshold
corrections at the GUT scale in order to concur with low energy measurements.

7We shall consider this ZR
4 symmetry in more detail in a later chapter.
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Conventionally, this quantity of GUT scale threshold corrections (defined at the 4D
GUT scale) is defined as:

�3 D ˛3 � ˛GUT

˛GUT
: (18.27)

The running coupling constants in the 4D MSSM can be summarized by:

˛�1
i .Q/ D ˛�1

GUT C bi
2�

log
MGUT

Q
� ˛�1

GUT

�3

.1C �3/
ıi3 (18.28)

where ıi3 denotes that the term appears only for i=3 (the coupling ˛3). The exact
amount of threshold corrections required from the extra states is usually model
dependent, but they have to be around a few percent level. For the most popular
scenarios of MSSM with unified gaugino masses, this number turns out to be about
�3%. We would like to calculate the effect of the Kaluza-Klein (KK) tower of
infinite states to the running of coupling constants in the orbifold model that we
have just constructed. These additional contributions to the running of the coupling
constants from KK modes can be written as8:

4�

g2i .�/
D 4�

g2.�/
C
X


˝i;.�/ (18.29)

where

˝i;.�/ � 1

4�

X
.m;n/2Z

ˇi;

Z 1

�

dt

t
e

�� t M
2
.m;n/;
�2 e���t (18.30)

includes one-loop corrections from both massive and massless states in the theory.
� is the ultraviolet (UV) regulator introduced since the integral is UV-divergent. �
is an infrared (IR) regulator introduced since the above quantity diverges for the
special case when there are massless states in the KK tower. The corrections come
from each state  that appears in the spectrum, with an associated beta-function
coefficient, ˇi;, summarized in Table 18.2 and mass, M2

.m;n/;, as calculated in the
previous section:

M2
.m;n/; D .m C I

4
/2

R25
C .n C I

4
/2

R26
(18.31)

We evaluate the expression in Eq. (18.30) in three different regions on the m-n plane
shown in Fig. 18.2 and then sum up the contributions to find the total corrections to

8We have followed the analysis of [354] in what follows. The details can be found in Appendix 1.
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Table 18.2 Nomenclature, quantum numbers, and beta-function coefficients for the various states
in the spectrum

Quantum number Name Type b1 b2 b3 Type b1 b2 b3
(8,1)0 g C 0 0 3 V 0 0 �9

(1,3)0 w C 0 2 0 V 0 �6 0

(3,2)
˙5=3 X; NX C 5/2 3/2 1 V �15/2 �9/2 �3

(3,1)
˙2=3 T; NT C 1/5 0 1/2 V �3/5 0 �3/2

(1,2)
˙1 Hu;Hd C 3/10 1/2 0 V �9/10 �3/2 0

Reprinted from Nuclear Physics B 868, A. Anandakrishnan and S. Raby, “SU(6) GUT breaking on
a projective plane,” Page 636, Copyright (2013), with permission from Elsevier

the couplings.9 We will show that for the special case R5 D R6, we obtain precise
gauge coupling unification [PGCU].

18.6 States at m = 0 and n = 0

In this case, the contribution to the threshold corrections is:

˝00
i;.�/ D 1

4�
ˇi;

Z 1

�

dt

t
e

�� t M
2
.0;0/;

�2 e���t (18.32)

We saw earlier that the only states at the m=0, n=0 point are the (++) modes. The
(++) modes come from the N=1 SUSY vector fields g;w; b;X; NX; and chiral adjoint
fields T; NT;Hu;Hd. The beta-function coefficients for these states are summarized in
Table 18.2. Using the results from Appendix, we find:

˝00
i D bCC

i .I D 0/

4�
� Œ0; ����

CbCC
i .I D 2/

4�
�

�
0; ��

�
1

4�2R25
C 1

4�2R26
C �

��
(18.33)

9 Note, on the orbifold fixed point F2 the gauge group is only [SU.3/ � SU.2/ � U.1/Y ] �U.1/X .
Thus gauge kinetic operators localized at these fixed points do not need to respect the SU(5)
symmetry. However we will assume that the bulk gauge kinetic terms dominate over these localized
terms when determining the low energy gauge couplings.
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18.7 m Axis, n = 0

Figure 18.2 shows that the .CC/ and .��/ states live only at even n whereas .C�/
and .�C/ states live at odd n. The absence of states at certain n has to be accounted
for while evaluating the integral. The details of evaluating the odd and even integrals
are explicitly presented in Appendix 1 and the result is:

˝m0
i D b.CC/

i .I D 0/

4�
RE
1

�
��1; 0;

ı1

�1

�
C b.CC/
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C b.��/
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!
�
h
0; ��
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4

C �2

4
C �
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where, �1 D 1

�2R25
, �2 D 1

�2R26
, and ı1 D 2

�2R26
C �.

The function R1 is also defined in Appendix 1. In simplifying the above
expression, we have also used the fact that when we have complete N=4 SUSY
in 4D, the beta-function coefficients sum up to zero.

b.CC/
i C b.C�/

i C b.�C/
i C b.��/

i D 0 (18.34)

for all i.10

10We have complete N=4 SUSY in 4D when we have one vector multiplet and three chiral
multiplets. In terms of the N=1 fields in 4D, the beta-function coefficients are given by:

bG D 3C2.G/� NchiralT.R/ (18.35)
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18.8 n Axis, m = 0

Along this axis, the calculation is similar to the previous case in the sense that the
states exist only at certain n. The .CC/ and .�C/ states live only at even n whereas
.C�/ and .��/ states live at odd n. Again, using the relations in Appendix 1 and
evaluating the integrals, we get:

˝0n
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4�
RE
1

�
��2; 0;
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(18.36)

where, �1 D 1

�2R25
, �2 D 1

�2R26
, and ı2 D 1

�2R25
C � as defined in Appendix 1.

18.9 Off the Axes

This case turns out to be rather simple since all the parity eigenstates live at all
(m,n) ¤ 0. This includes one vector and three chiral adjoint multiplets for every
state and they form complete N=4 supersymmetry. Thus these excited KK modes
do not contribute anything to the running of the coupling constants.
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18.10 Putting it All Together

The contribution from the four individual cases can be put together with the
appropriate beta-function coefficients. In the limit that the regulators can be set to
zero, they can be combined with the mass scale � and replaced by their relevant UV
and IR scales.

Q2 � �e���2
ˇ̌
ˇ
�!0

�2 � �2

�

ˇ̌
ˇ
�!0

(18.37)

The functions � and R1 in these limits simplify and these simplified expressions
are summarized in Appendix 2. The final expression for the threshold corrections at
the scale Q coming all the KK states that exist in the system are given by:
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ln
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5 C M2

6

�
(18.38)

where the scales Mi; i D 5; 6 are rescaled compactification scales, i.e. Mi D
p
�e�

Ri
.

Note that to arrive at this result, we have used the spectrum in Fig. 18.2 with mass
eigenvalues as shown in Eq. (18.31) (Table 18.3).

One important feature of this expression is that it tells us that there are no power-
law corrections to the couplings at any scale. This is unlike generic scenarios of
a (4+ı)D model with ı compactified dimensions. The couplings typically receive

power-law corrections proportional to


�
Mc

�ı
, where Mc is the smallest compact-

ification scale. Therefore, we should have expected quadratic corrections to the

Table 18.3 Beta-function
coefficients relevant for
Eq. (18.38)

Coefficients .b1; b2; b3/

bCC

i .I D 0/ . 33
5
; 1;�3/

bC�

i .I D 0/C b�C

i .I D 0/ .� 6
5
; 2; 6/

bC�

i .I D 0/C b��

i .I D 0/ . 6
5
; 6; 6/

bC�

i .I D 2/ . 27
5
; 3; 3/

Reprinted from Nuclear Physics B 868, A.
Anandakrishnan and S. Raby, “SU(6) GUT
breaking on a projective plane,” Page 639,
Copyright (2013), with permission from Else-
vier
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Fig. 18.3 The figure shows the dependence of m D


M5

M6

�2
on �3. The statement that MSSM

requires small threshold corrections at the GUT scale translates to anisotropic compactification.
Note, for M5 D M6 we have PGCU. Reprinted from Nuclear Physics B 868, A. Anandakrishnan
and S. Raby, “SU(6) GUT breaking on a projective plane,” Page 641, Copyright (2013), with
permission from Elsevier

couplings in the 6D model considered here. It turns out that the quadratic corrections
vanish due to the initial N=4 SUSY. This feature was also observed in [346] where
an SU.6/ theory was studied with N=2 SUSY in 6D. The model discussed in [346],
however had an effective 5D limit. Hence there were additional linear corrections to
the couplings. In the model discussed here, the compactification takes the 6D theory
directly down to 4D and hence we find only logarithmic corrections to the couplings.
Moreover, as shown in the next section, the logarithmic corrections are consistent

with gauge coupling unification above the scale
q
M2
5 C M2

6 . Moreover, if we take
M5 D M6 then we obtain precise gauge coupling unification at this compactification
scale (Fig. 18.3).

18.11 Results and Discussion

At the lowest compactification scale (largest compactification radius), we have 6D
orbifold and the 4D MSSM, respectively:

˛�1
i .Q/ D ˛�1.�/C

X


˝i;.Q/

˛�1
i .Q/ D ˛�1

GUT C bi
2�

log
MGUT

Q
� ˛�1

GUT

�3

.1C �3/
ıi3

We have three sets of equations, one for each coupling of SU(3) � SU(2) � U(1)Y
and four unknowns: �, M5, M6, and ˛.�/, the unified coupling constant of the
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Table 18.4 The table shows a benchmark point for choice 1 and choice 2

�3 (%) M5 M6 � ˛�1.�/

Point 1 �3:0 0:174� 1016 2:08� 1016 6:0 � 1017 13:57

Point 2 0:0 3:39� 1016 3:64� 1016 6:0 � 1017 17:47

Point 3 C3:0 1:37� 1017 3:44� 1016 6:0 � 1017 18:70

We fix ˛�1
GUT to be 24 and MGUT to be 3 � 1016 GeV for both the points. The smallest

compactification scale is naturally of the order of the 4D GUT scale. All scales are in GeV.
Reprinted from Nuclear Physics B 868, A. Anandakrishnan and S. Raby, “SU(6) GUT breaking
on a projective plane,” Page 641, Copyright (2013), with permission from Elsevier

orbifold theory, given MGUT and �3 from the 4D MSSM. We find that we can
uniquely solve for M5 and M6 in terms of MGUT and �3 and we obtain a curve in
the ˛ � � plane. The details of the solution are elaborated in Appendix 3 and we
summarize the solutions obtained:

M5 D �
m.�3/

.G�H /=2.m.�3/C 1/H =2eI =2

MGUT

M6 D �
m.�3/

.G�H �1/=2.m.�3/C 1/H =2eI =2

MGUT

˛�1.�/ D � 3
�

ln
�2

M2
GUT

C 3

�
ln
�
m.�3/

.G�H /.m.�3/C 1/H eI


Cln
�
m.�3/

.L�M /.m.�3/C 1/M eN


(18.39)

The coefficients G ;H ;I and N are given in Table 18.5 in Appendix 3. To
analyze the GUT scale threshold corrections, we fix ˛�1

GUT to be 24 in all further
calculations. Benchmark points are shown in Table 18.4. The ratio of M5 and
M6 = m, depends only on �3 and is shown in Fig. 18.3. The value of m sets the
hierarchy between the two compactification scales, M5 and M6. We analyzed the
particle spectrum at intermediate energies in the cases when (i) M5 
 M6 (ii)
M6 
 M5 and (iii) M5 D M6 to determine the scale associated with the unification
of SU.3/ � SU.2/ � U.1/Y gauge groups.11 Also, to determine if the SU.6/ was
broken down to a subgroup at these intermediate scales, reflecting the two step
GUT breaking procedure that we employed. We find two unification scales—the
SM gauge group unifies to an SU.3/�SU.3/�U.1/ at the scale M5 in all the above

three cases. Then further at the scale
q
M2
5 C M2

6 there is another unification scale

associated with SU.3/�SU.3/ unification to the SU.6/GUT. It is important to note,
that even though the gauge symmetry is broken locally at the fixed pointF2, there are

no logarithmic corrections to gauge coupling unification above the scale
q
M2
5 C M2

6

(see footnote 9). This is due to the effective N = 4 supersymmetry in the bulk.

11When M6 � M5 we have KK modes transforming as Higgs doublets and chiral adjoints under
the SM gauge group.
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Fig. 18.4 Once M5 and M6 are solved for uniquely, we are left with a curve in the ˛�1 �� plane,
as expressed in Eq. (18.39). The unified coupling at the cut-off scale is in the perturbative regime.
Reprinted from Nuclear Physics B 868, A. Anandakrishnan and S. Raby, “SU(6) GUT breaking on
a projective plane,” Page 641, Copyright (2013), with permission from Elsevier

It is also interesting to note that the standard scenarios of the MSSM can be
embedded in an isotropic or anisotropic orbifold. We find that in the anisotropic as
well as isotropic (M5 � M6) cases, the lowest compactification scale is around the
4D GUT scale, making it possible to connect the compactification scale and the 4D
GUT scale. For three benchmark points, the curve in the ˛�1.�/ � � plane, from
Eq. (18.39) is shown in Fig. 18.4. Finally we note that the values of ˛�1.�/;� may
be consistent with perturbative heterotic string boundary conditions. In the weakly
coupled regime of the heterotic string, the value of the GUT coupling constant at
the string scale is given by Dundee and Raby [355]:

˛�1.� D Mstring/ D 1

8

�
mPl

Mstring

�2
(18.40)

For example, consider the case MGUT D 2�1016 GeV and �3 D 0 in Fig. 18.4. With
� D 2�1017 GeV, mPl D 2:4�1018 GeV, we find ˛�1.�/ ' 18which is consistent
with Eq. (18.40).

18.12 Summary

In this chapter, we discussed a supersymmetric SU.6/ gauge theory on an orbifold
with the topology of a real projective plane. The compact space was obtained in two
steps by orbifolding a rotation and a freely-acting roto-translation. In the process, the
gauge symmetry was broken down from SU.6/ to SU.5/�U.1/X and the N=4 SUSY
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was reduced to N=2. To further break the SU.5/ down to the Standard Model, we
introduced a non-zero Wilson line along the fifth and sixth directions. This helped
to eliminate the unwanted light states like the Higgs triplets and to break N=2 to
N=1 SUSY.

We calculated the Kaluza Klein spectrum of states coming from this orbifolding
and also calculated the threshold corrections coming from these states at the 4D
grand unification scale. We find that the threshold corrections coming from the KK
states due to compactification on an orbifold with the topology of RP2 are at the
percent level allowing for realistic 4D MSSM. The solutions allow for threshold
corrections to be between f�3%;C2%g allowing for the standard universal gaugino
mass scenario like CMSSM or the non-universal gaugino mass scenarios (especially
lighter gluinos as discussed in [341, 356]). There have been previous calculations of
threshold corrections in orbifold GUT models on various orbifolds with local and
non-local GUT breaking. We have already pointed out that unlike in other scenarios
we do not get power law running of couplings above the compactification scale
due to the large N=2 in 6D. The advantage of not having such large power-law
corrections is that we do not lose any predictability due to UV scale physics. We
should point out that in the work of Trapletti [344], the author considered a non-local
GUT breaking and concluded that the running of couplings stops precisely above
the compactification scale. We however find that there are small finite threshold
corrections at all scales.

There is one interesting case where the compactification scale, Mc, is the GUT
scale, MGUT , i.e. when gauge couplings unify precisely at the compactification scale.
This occurs when M5 D M6 D Mc. At this scale, all KK modes have mass of order
Mc. Above this scale SU.5/ symmetry is restored and all gauge couplings unify with
�3 D 0, i.e. we obtain precise gauge coupling unification.

Our analysis was a bottom-up approach studying the phenomenology of models
on an orbifold with the topology of a projective plane. It would be interesting to
explore the possibility of embedding these orbifold GUTs into a more fundamental
theory, like string theory. On the other hand, it would be equally interesting to
study low energy features like SUSY breaking and spectra. Finally, since the
compactification scale is naturally around the 4D GUT scale or larger, one does not
have to worry about proton decay from dimension 6 operators. Moreover, proton
decay from dimension 5 operators vanishes due to a discrete R symmetry.

Appendix 1: Kaluza-Klein Integrals

In order to compute the threshold corrections coming from an infinite tower
of Kaluza-Klein states, we would like to evaluate the following integral (see
Eq. (18.30)):

X
.m;n/2Z

Z 1

�

dt

t
e

�� t M
2
.m;n/
�2 e���t (18.41)
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where, � and � are IR and UV regulators, and the M.m;n/ are the masses of the
.m; n/th KK mode. In the presence of Wilson lines they are given by:

M2
.m;n/ D .m C 1/

2

R25
C .n C 2/

2

R26
(18.42)

where in the scenario that we have, 1 can be either 0 or 2 and 2 is always 0.
In general, we can solve the integral following Ghilencea [354] who evaluates
the integral for the cases of one and two extra-dimensions. Again, in the current
scenario that we have, we find that we only need to evaluate this integral in its one-
dimensional limit. We follow Ghilencea and evaluate a 1-dimensional Kaluza-Klein
integral of the form:

R1 Œ�; ; ı� D
0X

m2Z

Z 1

�

dt

t
e�� tŒ.mC/2Cı� (18.43)

where the prime over the summation in the second term represents that m ¤ 0, but
runs over all other integer values.

We can make use of the Poisson re-summation formula:

X
n2Z

e��A.nC�/2 D 1p
A

X
Qn2Z

e��A�1Qn2C2i�Qn� (18.44)

to evaluate this integral. We have,

R1 Œ�; ; ı� D
Z 1

�

dt

t

"
�e�� t2 C

X
m

e�� t.mC/2
#
e��ıt

D
Z 1

�

dt

t

2
4�e�� t2 C 1p

t
C 1p

t

0X
m

e��m2=tC2i�m
3
5 e��ıt

D �� �0; ��.ı C 2/
�C 2e��ı�

p
�

C 2�
p
ıErf

hp
�ı�

i

�logj2 sin�.C i
p
ı/j2 (18.45)

where, it has been assumed that � 
 1 while evaluating the integralR1
�

dt
t e

��m2=t��ıt and Ghilencea [354] shows that the error by doing so vanishes
when � is small.
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We summarize the result of this integral in various useful limits:

• (m,n) = (0,0)

Z 1

�

dt

t
e

�� t 21

R25�
2 e���t D

Z 1

�

dt

t
e��.C�/t

D � Œ0; ��.�C /� (18.46)

where  D 21
R25�

2
C 22

R26�
2

• n=0, m ¤ 0

0X
m2Z

Z 1

�

dt

t
e

�� t
.mC1/

2

R25
C

22

R26
�2 e���t D

0X
m2Z

Z 1

��1

dt

t
e�� t.mC1/2e�� ı1

�1
t

D R1

�
��1; 1;

ı1

�1

�
(18.47)

where, �1 D 1

�2R25
and ı1 D �C 22

�2R26
.

• m=0, n ¤ 0
Similar to the previous case with some parameters interchanged, we have:

0X
n2Z

Z 1

�

dt

t
e

�� t
21

R25
C
.nC2/

2

R26
�2 e���t D

0X
n2Z

Z 1

��2

dt

t
e�� t.nC2/2e�� ı2

�2
t

D R1

�
��2; 2;

ı2

�2

�
(18.48)

where, �2 D 1

�2R26
and ı2 D �C 21

�2R25
• Since the spectrum we are interested in has states that live either at odd or

even integers, it is write down the result of this integral in these limit that the
summation is over either even or odd integers:
n D 0;m ¤ 0; m D even

RE
1

�
��1; 1;

ı1

�1

�
D

0X
m2Z

Z 1

�
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m2Z
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t
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.mC

1
2 /
2

R25
C

22

4R26
�2 e���t=4
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D
0X

m2Z

Z 1

4��1

dt

t
e�� t.mC1/2e�� ı1

4�1
t

D R1

�
4��1;

1

2
;
ı1

4�1

�
(18.49)

where, �1 D 1

�2R25
and ı1 D �C 22

�2R26
is the same as previously defined.

n D 0;m ¤ 0; m D odd

RO
1

�
��1; 1;

ı1

�1

�
D
X
m2Z

Z 1

�

dt

t
e

�� t
.2m�1C1/

2

R25
C

22

R26
�2 e���t

D
X
m2Z

Z 1

�

dt

t
e

�4� t
.mC

1�1
2 /2

R25
C

22

4R26
�2 e���t=4

D
Z 1

��1

dt

t
e�� t .1�1/2

4 e�� ı1
4�1

t

C
0X

m2Z

Z 1

4��1

dt

t
e�� t.mC 1�1

2 /2e�� ı1
4�1

t

D �
�
0; ��.�1.1 � 1/2 C ı1/

�C R1

�
4��1;

1 � 1
2

;
ı1

4�1

�

(18.50)

In order to write the result of the integral in terms of the original R1, we separate
the zeroth term from the rest in the summation. It is also useful to note that the
function R1 is even in  and hence:

R1 Œ�; ; ı� D R1 Œ�;�; ı� (18.51)

Appendix 2: Useful Limits of Relevant Functions

The result of the Kaluza-Klein integrals were evaluated in the previous section, in
terms of the two functions, � Œ0; ���� and R1 Œ�; ; ı�. � and � are the regulators
and in the limit that they are zero, we can replace them with the relevant mass
scales.

Q2 � �e���2
ˇ̌
ˇ
�!0

�2 � �2

�

ˇ̌
ˇ
�!0

(18.52)
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As evaluated in the previous section:

R1 Œ�; ; ı� D �� �0; ��.ı C 2/
�C 2e��ı�

p
�

C 2�
p
ıErf

hp
�ı�

i

�logj2 sin�.C i
p
ı/j2

We use the following expansions:

� � Œ0; z� D � C ln z C
X
k
1

.�z/k

kŠ k
z > 0 (18.53)

Erf Œx� D 2xp
�

� 2x3

3
p
�

C O.x5/ x 
 1 (18.54)

Then,

� Œ0; ���� D �� � ln ���

D �ln �
e��2Q2

�2�e��2

D �ln
Q2

�2
(18.55)

With these approximations, R1 Œ�; ; ı� simplifies to:

R1 Œ�; ; ı� D �ln

�
4�e�� 1

�
e�2=p�

�
� ln

ˇ̌
ˇ̌
ˇ
sin. C i
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ı/
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ı/
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ˇ
2

(18.56)

We summarize, the various terms that come up in the calculation of threshold
corrections in Sect. 18.5. In the expressions below, we have also introduced the
compactifications scales M5 D p

�e� =R5 and M6 D p
�e�=R6.

� Œ0; ���� D ln
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Q2

� Œ0; ���1� D �� � ln
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�2R25
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�
M2
5

�2
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�2R26

D �ln

�
M2
6

�2

�
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Appendix 3: 6D ! 4D Matching

We calculated the corrections to the gauge couplings coming from the KK states of
the 6D orbifold model that was constructed. At the lowest compactification scale
(largest compactification radius), we said that the couplings from 4D MSSM and
6D orbifold model should match. In this section, we will compare the two sets of
equations, from the two theories:

˛�1
i .Q/ D ˛�1.�/C

X


˝i;.Q/

˛�1
i .Q/ D ˛�1

GUT C bi
2�

log
MGUT

Q
� ˛�1

GUT

�3

.1C �3/
ıi3

and solve for the three scales of the orbifold model, �, M5, and M6 as well as
coupling constant, ˛ at the cut-off scale.

Since the two expressions have to match at all scales below the smallest
compactification scale of the orbifold model, we can rewrite the above two equations
as:
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where we have used the complete expression we estimated for the corrections to
couplings in (18.38).

We use the following redefinitions:

bMSSM
i

4�
D bCC

i .I D 0/

4�
D ˇi

bC�
i .I D 0/C b�C

i .I D 0/

4�
D �Ai
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i .I D 0/C b��

i .I D 0/

4�
D �Bi

bC�
i .I D 2/

4�
D �Ci (18.59)

and

.Ai C Bi/ln
h�
2

i2 C Ciln Œ4� D Di (18.60)

and hence end up with a set of three equations that can be simply written as:

˛�1
GUT � ˛�1.�/� ˛�1

GUT

�3

.1C �3/
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�2
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5 C M2

6

C Di D 0 (18.61)

where, Ai D A1i C A2i and i D 1; 2; 3. We look at the equations corresponding
(i) (i = 1) - (i =2) (ii) i = 2 (iii) i = 3 and solve for �, M5, and M6. It is usually
considered that the 4D unification scale is around 3:0� 1016 GeV and the couplings
at this scale are unified at ˛�1

GUT D 24. In standard scenarios of MSSM with gaugino
mass unification, �3 D �3%. Depending of the spectrum of low energy SUSY, these
quantities are subject to change. The first equation we get by simplifying Eq. (18.61)
for (i = 1) - (i =2) is:
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Defining, �
2

M2
5

D X and �2

M2
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D Y, we get:
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Next, we look at Eq. (18.61) when i D 2:
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Then, using the expression we just derived in Eq. (18.63), we get an expression for
˛�1.�/:
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(18.65)

Finally, we look at Eq. (18.61) when i D 3, and simplify it using the relations
obtained in Eqs. (18.63) and (18.65) and we get a final expression:
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The above three equations can be rewritten in a simple manner as (in the order
Eqs. (18.66), (18.63), (18.65)):
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(18.67)

with,
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These quantities can be calculated using the beta-function coefficients given in
Table 18.3. The numerical values of all the above coefficients are summarized in
Table 18.5.

With these coefficients, we get a simple quadratic equation in terms in of the
variables X and Y:

�
Y
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�2
C Y

X
� Exp

�
�7�D.�3/

3

�
D 0 (18.68)

Recall that X D �2
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5

and Y D �2
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, which implies that the above equation turns into a

quadratic equation in
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�2
with the solution.
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which we write as M5 D p
m.�3/M6. The slope m, is the positive solution from the

above expression and is shown in Fig. 18.3. The other two equations then yield us
M5 and M6 uniquely and one expression relating ˛�1.�/ and �.
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(18.70)

Table 18.5 The coefficients
in the expression Eq. (18.67)

Coefficient Value

A � 3
7�

B 6
7�

C � 3
7�
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�3
1C�3

� 6
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ln 4
�

F 4
7
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7
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7
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14�

L � 12
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M � 9
14�
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ln2� 33
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Chapter 19
Discrete R Symmetries for the MSSM
and Its Singlet Extensions

In this book we have studied supersymmetric extensions of the Standard Model,
including the MSSM, and supersymmetric orbifold GUTs in 4 and higher dimen-
sions. Although they provide a framework for solving the hierarchy problem, they
introduce additional problems associated with the � term, flavor problems and
new effective operators which violate baryon and lepton number, leading to proton
decay. We have discussed particular mechanisms which can ameliorate each of these
problems. The � problem can be solved by incorporating a symmetry which forbids
the � term at the tree level, but is broken spontaneously by a SUSY breaking
VEV, i.e. the so-called Giudice-Masiero mechanism [117], or by a Peccei-Quinn
symmetry breaking VEV which results in a � term and an invisible QCD axion,
the so-called Kim-Nilles mechanism [118]. Minimal flavor violation and/or heavy
scalars can protect against large flavor violation. This, of course, depends on the
SUSY breaking mechanisms.

With regards to proton decay, dangerous dimension four operators can be
forbidden by R- or matter parity [6, 29, 87], which is an anomaly free Z2 subgroup
of the continuous baryon minus lepton symmetry U.1/B�L. Dimension five proton
decay operators can be forbidden by ‘baryon triality’ [89], which combines with
matter parity to give ‘proton hexality’ [90, 357]. The latter is the unique anomaly
free discrete non-R symmetry forbidding the dangerous operators while allowing
the usual Yukawa couplings, the �-term and the effective neutrino mass operator.1

However, there are two unpleasant properties of these traditional discrete symme-
tries. First, they do not allow to address the� problem. Second, they do not commute
with the symmetries of the grand unified theories (GUTs) SU.5/ or SO.10/ [361].

In [362] a discrete R symmetry was identified which can address the � problem
and commutes with SO.10/. This ZR

4 symmetry is anomaly free through cancellation
by the Green–Schwarz [GS] mechanism. In [353] it was shown that this ZR

4 is

1Anomaly freedom is believed to be a necessary property of discrete symmetries as otherwise
quantum gravity effects may render them inefficient [89, 358–360].
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the unique possibility which commutes with SO.10/, and it was pointed out that
it also solves the problem associated with dimension five proton decay operators.
Furthermore it contains matter parity as a Z2 subgroup that is left unbroken after
supersymmetry breaking. It has been shown that the ZR

4 symmetry is only allowed
in orbifold GUTs [363]. In addition, in orbifold GUTs, a � term and dimension
5 operators can also be forbidden by a continuous R-symmetry [314]. Finally,
dimension 6 operators are very model dependent. They can be enhanced if quarks
and leptons reside on a GUT brane with a low energy compactification scale. Or
they can be suppressed by placing quarks and leptons in the bulk.

Here we consider, in general, the possible discrete symmetries of the MSSM
which commute with SU.5/. As we shall see, there are only five possibilities with
the simplest one being the ZR

4 . Our analysis applies to singlet extensions of the
MSSM as well. We feel that these discrete R symmetries are useful for defining
phenomenologically safe low energy theories. Moreover, in the next few chapters
we shall discuss the embedding of orbifold GUTs in string theories. In such theories,
model dependence is very constrained. Model dependence is essentially rephrased
as a choice of the geometry of the extra dimensions. The particle states and their
interactions are output once the geometry is chosen. We shall see that discrete
symmetries in string theory can be useful to define the low energy theory we call
the MSSM.

The chapter is organized as follows. In Sect. 19.1 we prove that there are only five
(generation independent) discrete ZR

M symmetries which (1) commute with SU.5/,
(2) allow the usual Yukawa couplings and dimension five neutrino mass operator
and (3) address the � and proton decay problems of the MSSM. Section 19.2 is
dedicated to a more detailed discussion of the simplest such symmetry, ZR

4 . In
Sect. 19.3 we discuss discrete R symmetries in singlet extensions of the MSSM.
In a theory with the usual NMSSM couplings the discrete R symmetries can, apart
from suppressing the proton decay rate, provide us with a solution to the NMSSM
hierarchy problem. In a different singlet extension, in which the singlet couples
quadratically to the Higgs bilinear, we will identify a unique discrete R symmetry
capable of solving the � and strong CP problems simultaneously. Finally, Sect. 19.4
contains our conclusions. In two appendices we present a re-derivation of discrete
anomalies in the path integral approach and collect anomaly coefficients for discrete
R and non-R symmetries. This chapter is based on the results of [353, 364]. See also
[365–367].

19.1 Discrete Symmetries of the MSSM

In this section we discuss discrete symmetries of the MSSM which commute with
SU.5/ and can solve the � problem. As we shall see, the assumption that matter ZM

charges commute with SU.5/ allows us to restrict possible ZM symmetries of the
MSSM, as well as singlet extensions, to only few possibilities. We start in Sect. 19.1
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by showing that one cannot address the � problem with non-R symmetries. In
Sect. 19.1.1 we then turn to the discussion of discrete R symmetries, for which we
prove that the order M has to divide 24. Finally, in Section “Classification”, we
classify all possible charge assignments.

Non-R Discrete Symmetries

We start by discussing non-R symmetries. We show that such discrete symmetries
that are consistent with SO.10/ or SU.5/ relations for matter, i.e. universal charges
for quarks and leptons, cannot forbid the� term (cf. the similar discussion in [368]).

Consider a ZM symmetry under which the three generations of Q, U and E
carry discrete charge qg10 while L and D carry qg

5
, where g labels the generation

index. Our conventions are given in Section “ZM and ZR
M Anomaly Coefficients”

in Appendix. If the ZM charges obey the even stronger SO.10/ relations (i.e.
qg10 D qg

5
), the following discussion applies as well. The anomaly coefficients

A3 WD ASU.3/C�SU.3/C�ZM , A2 WD ASU.2/L�SU.2/L�ZM , A1 WD AU.1/Y�U.1/Y�ZM

and A0 WD Agrav�grav�ZM are (cf. Eq. (19.79) in Section “ZM and ZR
M Anomaly

Coefficients” in Appendix)

A3 D 1

2

3X
gD1
.3 � qg10 C qg

5
/ ; (19.1a)

A2 D 1

2

3X
gD1
.3 � qg10 C qg

5
/C 1

2
.qHu C qHd/ ; (19.1b)

A1 D 1

2

3X
gD1



3 � qg10 C qg

5

�
C 3

5
� 1
2

� .qHu C qHd/ ; (19.1c)

A0 D
3X

gD1



10 � qg10 C 5 � qg

5

�
C 2qHu C 2qHd ; (19.1d)

where the sum runs over the generation indices g and qHu and qHd denote the
ZM charges of the up-type and down-type Higgs doublets, respectively. Anomaly
freedom requires

.A1�i�3 mod �/ D 1

24
.A0 mod �/ D  (19.2)
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with  ¤ 0 in the case of GS anomaly cancellation (cf. Eq. (19.62) in Section
“Discrete Green–Schwarz Mechanism” in Appendix). Here we define

� WD
�
M for M odd ;
M=2 for M even :

(19.3)

Condition (19.2) implies

A2 � A3 D 0 mod � (19.4)

and hence, also in the case of generation-dependentZM charges,

1

2
.qHu C qHd/ D 0 mod � : (19.5)

On the other hand, the condition that the � term is allowed is

qHu C qHd D 0 mod M : (19.6)

We therefore see that, if we demand SU.5/ relations for matter charges, a non-
R ZM symmetry cannot be used to address the � problem, even if we allow for GS
cancellation of anomalies.

19.1.1 Discrete R-symmetries

Having seen that non-R symmetries cannot be used to address the � problem, we
turn to discuss discrete R symmetries. In this subsection, we derive constraints on
the order M of ZR

M symmetries that can solve the � problem and accommodate the
structure of the MSSM.

A Constraint on the OrderM

After adding the contribution of the gauginos and gravitino the anomaly coefficients
are

AR
3 D 1

2

3X
gD1



3qg10 C qg

5

�
� 3 ; (19.7a)

AR
2 D 1

2

3X
gD1



3qg10 C qg

5

�
C 1

2
.qHu C qHd/ � 5 ; (19.7b)
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AR
1 D 1

2

3X
gD1



3qg10 C qg

5

�
C 3

5

�
1

2
.qHu C qHd/� 11

�
; (19.7c)

AR
0 D �21C 8C 3C 1C

3X
gD1

h
10 .qg10 � 1/C 5 .qg

5
� 1/

i

C2 .qHu C qHd � 2/ ; (19.7d)

where q10, q5, qHu and qHd denote the R charges of the matter and Higgs superfields,
i.e. matter fermions and Higgsinos have charges q � 1.

In the case  ¤ 0, the GS mechanism requires the presence of an axion, such
that AR

0 is to be amended by the axino/dilatino contribution (qQa D �1).
Subtracting the coefficients from each other leads to the universality conditions

AR
2 � AR

3 D 0 mod � Õ qHu C qHd D 4 mod 2� ; (19.8a)

AR
1 � AR

3 D 0 mod �

Õ 3

5

�
1

2
.qHu C qHd/� 6

�
D 0 mod � : (19.8b)

Equation (19.8a) is equivalent to

1

2
.qHu C qHd/ D 2C � ` (19.9)

with an integer `. Inserting this into Eq. (19.8b) yields

3

5
Œ` �� 4� D k � (19.10)

with another integer k. Altogether we find

Œ3 ` � 5 k� D 12=� D
�
24=M ; for M even ;
12=M ; for M odd :

(19.11)

In both cases 24=M has to be integer, i.e. M has to divide 24. Thus the possible
values of M are 3; 4; 6; 8; 12 and 24.2 In what follows, we consider all these
possibilities.

2We exclude the case M D 2 since there are no meaningful order 2 discrete R symmetries (cf. e.g.
[369]).
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Classification

Given the constraints on the order M, it is straightforward to classify all phe-
nomenologically attractive charge assignments. Here we assume that the charge
assignments are family blind. Though not absolutely necessary it does ensure that
the symmetry does not prevent mixing between families in the fermion mass matrix.
The classification was done by a scan over all possible values of M. In addition to
forbidding the � term we require that

1. Mixed gauge-ZR
M anomalies cancel, i.e. AR

1�i�3 D  mod �;

2. Yukawa couplings 10 10Hu and 10 5Hd as well as the neutrino mass Weinberg
operator 5Hu 5Hu are allowed;

3. R-parity violating couplings are forbidden.

Under these constraints the allowed charge assignments are given in Table 19.1.
For completeness we note that there are only two more charge assignments that

are allowed demanding just the first two conditions. They are given in Table 19.2.

Table 19.1
Phenomenologically
attractive charge assignments

M q10 q5 qHu qHd qsh
Hu

qsh
Hd

 AR
0 .MSSM/

4 1 1 0 0 16 16 1 1

6 5 3 4 0 28 24 0 1

8 1 5 0 4 24 28 1 3

12 5 9 4 0 28 24 3 1

24 5 9 16 12 88 84 9 7

The charges qsh
Hu

and qsh
Hd

are Higgs charges shifted in such
a way that the anomaly coefficients AR

i (1 � i � 3) are
manifestly universal.  is the universal value of the anomaly
coefficients;  ¤ 0 indicates GS cancellation of anomalies.
Reprinted from Nuclear Physics B 850, H.M. Lee, S. Raby,
M. Ratz, G.G. Ross, R. Schieren, K. Schmidt-Hoberg, and
P.K.S. Vaudrevange, “Discrete R symmetries for the MSSM
and its singlet extensions,” Page 5, Copyright (2011), with
permission from Elsevier

Table 19.2 Charge
assignments which satisfy
only the first two criteria

M q10 q5 qHu qHd qsh
Hu

qsh
Hd

3 2 0 1 0 10 12

6 2 0 4 0 28 24

Both assignments have  D 0. Reprinted
from Nuclear Physics B 850, H.M. Lee,
S. Raby, M. Ratz, G.G. Ross, R. Schieren,
K. Schmidt-Hoberg, and P.K.S. Vau-
drevange, “Discrete R symmetries for
the MSSM and its singlet extensions,”
Page 5, Copyright (2011), with permis-
sion from Elsevier
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One may ask whether there are additional discrete symmetries, such as Z.R/O �
Z.R/P , which cannot be written as single Z.R/M symmetries but also fulfill the three
criteria above. The only candidates for such symmetries are based on the two
patterns shown in Table 19.2. We find that by amending these assignments by
the usual matter parity one arrives at the ZR

6 symmetry of Table 19.1. Hence our

classification also comprises the Z.R/O � Z.R/P case. Of course, in extensions of the
MSSM, extra states can enjoy additional symmetries.

Dimension Five Nucleon Decay Operators

Note that the third condition is sufficient to eliminate baryon and lepton number
violation due to dimension four terms in the Lagrangian density. However in the
MSSM at dimension five there are problematic operators allowed that generate
nucleon decay. To be consistent with the bounds on nucleon decay these must
be suppressed by a mass scale more than eight orders above the Planck scale, a
major problem. However in the case of the ZR

M symmetries these operators are
automatically absent. To see this note that the requirement that up- and down-type
Yukawa couplings be allowed implies

3q10 C q
5

C qHu C qHd D 4 mod M : (19.12)

Combining this with Eq. (19.8a) gives

3q10 C q
5

D 0 mod M ; (19.13)

showing that (for M ¤ 2) the troublesome dimension five operators 10 10 10 5 are
automatically forbidden whenever the Yukawa couplings are allowed.

The Gravitational Anomaly Constraint

For all charge assignments, the MSSM contribution to the gravitational anomaly is

AR
0 .MSSM/ D 7 mod � : (19.14)

All cases except for M D 6 have  ¤ 0 and hence require the presence of an axion
a. Call the multiplet containing the axion S,

Sj�D0 D s C i a I (19.15)

later we will identify S with the dilaton. From the coupling to the gauge fieldsR
d2� SW˛W˛ one infers that the axino/dilatino has R charge �1. Therefore, after
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adding the axino/dilatino contribution we obtain

AR
0 .MSSM C axino=dilatino/ D 6 mod � : (19.16)

The condition for anomaly freedom is

1

24

�
AR
0 mod �

 D AR
i mod � (19.17)

for 1 � i � 3. Now, since AR
i 2 Z and since the order M, and therefore �, divides

24, this condition is equivalent to

AR
0 D 0 mod � : (19.18)

From Eq. (19.16) we see that the cases M D 4 and 12 are anomaly free. The case
M D 6 is anomaly free with an axion that is singlet under ZR

6 . All the other cases
require additional states in order to cancel the gravitational anomaly.

However this does not necessarily require additional states in the low energy
spectrum. This is because states contributing to the anomaly can acquire mass when
the symmetry is spontaneously broken. Since the R symmetry is broken in the
hidden sector when supersymmetry is broken these states can acquire a mass of
order the supersymmetry breaking scale in the hidden sector which can be as large
as 1013 GeV. With this in mind we will not consider the gravitational anomaly any
further.

19.2 A Simple ZR
4
Symmetry in the MSSM

In Table 19.1 we survey all symmetries and charge assignments which commute
with SU.5/. The simplest one, the ZR

4 , commutes also with SO.10/. In what follows
we will discuss this case in more detail. This symmetry was first considered in [353,
362].

Non-perturbative Terms

The gauge invariant superpotential of the MSSM contains

W D �Hu Hd C �i LiHu

CYij
e Hd Li Ej C Yij

d Hd Qi Dj C Yij
u Hu Qi Uj

C�.0/ijk LiLjEk C �
.1/
ijk LiQjDk C �

.2/
ijk Ui Dj Dk
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C�.0/ij Hu Li Hu Lj C �
.1/

ijk`Qi Qj Qk L` C �
.2/

ijk`Ui Uj Dk E`

C�.3/ijk Qi Qj Qk Hd C �
.4/
ijk Qi Uj Ek Hd C �

.5/
i LiHuHuHd : (19.19)

We see immediately that the coefficients �, �i, �
.0/
ijk , �.1/ijk , �.2/ijk , �.1/ijk`, �

.2/

ijk`, �
.3/
ijk , �.4/ijk

and �.5/i are forbidden by ZR
4 perturbatively while Yij

e;d;u and �.0/ij are allowed. In what

follows we will show that at the non-perturbative level � as well as �.1/ijk` and �.2/ijk`

will be induced while the R parity violating couplings �i and � as well as the �.3�5/
remain zero. The reason is that the latter are forbidden by a Z2 subgroup ofZR

4 which
is equivalent to matter parity. This subgroup is unbroken by the supersymmetry
breaking sector and thus remains a symmetry of the full theory.

Let us spell out the argument in somewhat more detail. Call the ZR
4 transforma-

tion �,

� W matter superfield ! i � matter superfield ;

Higgs superfield ! Higgs superfield ;

� ! i � � ;
W ! �W : (19.20)

Now look at the transformation �2, under which matter superfields transform with
a minus, Higgs superfields go into themselves and � ! �� . The transformation
fermion ! �fermion and � ! �� is a symmetry of any SUSY theory, therefore
�2 is equivalent to matter parity, and, in particular, anomaly free with  D 0. One
can use the path integral (cf. Section “Appendix: Discrete Anomalies in the Path
Integral Approach”) to show that correlators that vanish due to a non-anomalous
symmetry with  D 0 also vanish at the quantum level. Therefore, the matter parity
subgroup contained in the ZR

4 will not be violated by quantum effects.
On the other hand, correlators which are only forbidden by ZR

4 but not by Z2, i.e.
which are invariant under �2, can be non-trivial at the quantum level. A convenient
way to parametrize effective couplings describing these effects involve the S field,
which shifts under the ZR

4 symmetry as [cf. Eq. (19.61)]

S ! S C i

2
�GS : (19.21)

The discrete shift of S is given by [cf. Eq. (19.62)]

�GS D 1

4�
.AG�G�ZR

4
mod 2/ D 1C 2�

4�
(19.22)
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with � 2 Z. This allows us to write down terms

�Wnp D exp

�
�8�2 1C 2n

1C 2�
S

� h
B0 C �Hu Hd C �

.1/

ijk`Qi Qj Qk L`

C �
.2/

ijk`Ui Uj Dk E`

�
(19.23)

with some coefficients B0, � and �.1;2/ijk` and n 2 Z. Such superpotential terms are

ZR
4 covariant, i.e. the exponential transforms with a minus under ZR

4 while the terms
in the square brackets are invariant. Due to the fact that S enters the gauge kinetic

function, these terms are proportional to e
�8�2 1C2n

1C2�
1

g2 . For n D � D 0 they can be
interpreted as originating from t’Hooft instanton effects. The 8�2 in the exponential
can also be obtained directly in a stringy computation [276]. The crucial property of
the non-perturbative couplings (19.23) is that they are naturally suppressed.

The critical question concerns now the interpretation of the e�8�2 1C2n
1C2� S terms. So

far we have shown that such terms are ZR
4 covariant. In the MSSM as a ‘stand-

alone’ theory, SU.3/C or SU.2/L instantons can generate such terms, but their
magnitude turns out to be very small. Whether or not further terms, with given n
and �, appear depends on the model. Let us now make the very common assumption
that there is a hidden sector that gets strong at some intermediate scale �. Then
the non-perturbative terms related to the strong dynamics may well be the source
of supersymmetry breakdown [12, 370]. Given non-renormalizable interactions
between the MSSM and the hidden sector, communicated by some messenger fields,
� sets the magnitude of the MSSM soft terms, msoft � �3=M2�, with M� being the
messenger scale. In such settings, holomorphic, i.e. superpotential, terms can also
be induced by higher-dimensional operators. That is, the �Wnp terms can appear
with magnitude msoft � �3=M2�, but in principle they may also be absent if there
are no higher-dimensional operators connecting the MSSM sector with the hidden
sector exhibiting strong dynamics. In other words, if the MSSM fields are singlets
under the hidden sector gauge interactions, there is, a priori, no guarantee that the
�Wnp terms appear with reasonable size. If the scale of MSSM soft terms is related
to some hidden sector strong dynamics, we expect the holomorphic terms also to
appear, unless there are additional symmetries beyondZR

4 that forbid such couplings.
Assuming that the dominant non-perturbative scale is related to supersymmetry
breakdown we expect that the�Wnp terms are of the order of the soft supersymmetry
breaking terms. We will mainly focus on gravity mediation, where M� D mPl and
these terms are of the order of the gravitino mass m3=2 (in Planck units). Below
in Chap. 23 we will present an explicit string theory example in which the non-
perturbative� term is directly connected to m3=2.

At this point let us mention that for the case of discrete R symmetries we
disagree with statements made in [369], where it was claimed that, in the context of
gravity mediation, R symmetries will be broken at the Planck scale and be therefore
ineffective. The claim relies on the observation that there are fields with Planck
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scale VEVs that break the R symmetry. The derivation of this result relies on the
inequality jhW ij � 1

2
frjFj (cf. Eq. (9) in [369]) where fr is the R-axion decay

constant. This was derived for the case of continuous R symmetries by taking the
limit of an infinitesimal transformation [369]. For the case of discrete R symmetries
the inequality is no longer true and there is no requirement that R-non singlets
acquire Planck scale VEVs. In this case the R symmetry can be broken at a much
lower scale. This is the case in the supergravity examples discussed here. In them
the breaking of the R symmetry occurs non-perturbatively at an intermediate scale in
a hidden sector and it is the superpotential VEV hW i rather than a field VEV that is
the order parameter for R symmetry breaking. Since the superpotential only appears
at the non-perturbative level it is small. Also all other R symmetry breaking terms are
small. This applies also to other schemes such as the one discussed in [371], where
a small hW i is a consequence of an approximate R symmetry. Here the R symmetry
is broken perturbatively, but again the order parameter, i.e. the superpotential VEV,
is very small. In conclusion, R symmetries are a useful tool also, or in particular, in
gravity mediation, where the same parameter, the small superpotential VEV, both
sets the scale of soft masses and cancels the vacuum energy. In what follows, we
discuss how the connection between the �Wnp terms and m3=2 arises in the scheme
of Kähler stabilization.

Dilaton Stabilization and Supersymmetry Breaking

At the present stage of the discussion, the S field has no potential and supersymmetry
is unbroken. An economical way to rectify this situation is to invoke the stringy
scheme of Kähler stabilization [372–375].3 In this case the term of the form e�b S

represents a hidden sector gaugino condensate [370], which sets the scale for
supersymmetry breakdown. According to the above discussion, in the presence of
our ZR

4 symmetry

b D 8�2
1C 2n

1C 2�
: (19.24)

Let us discuss what that means in the case of a hidden SU.Nc/ theory with Nf chiral
superfields in the Nc C Nc representations. Here the coefficient b is given by

b D 3

2ˇ
D 3 � 8�2

3Nc � Nf
: (19.25)

3Alternatively, other stabilization schemes, such as racetrack mechanisms, may be applicable here.
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Therefore

3

3Nc � Nf
D 1C 2n

1C 2�
: (19.26)

In the scheme under consideration, supersymmetry is broken by a non-trivial
VEV of FS. This leads to gaugino and soft scalar masses, following the pattern
of the so-called “dilaton dominated scenario” [376]. This scenario has a number
of phenomenologically attractive features. In particular, due to flavour universality
in the soft breaking sector, it avoids the SUSY FCNC problem. Also, most of
the physical CP phases, e.g. arg.A�M/, vanish which ameliorates the SUSY CP
problem. However in the dilaton dominated case the vacuum structure may favour
an unacceptable colour breaking minimum [377]. Other phenomenological aspects
have been discussed in [378].

Moreover, the (non-perturbative) superpotential acquires a non-trivial VEV as
well,

hW i � e�b hSi ¤ 0 : (19.27)

All gauge invariant terms which have been forbidden because they have zero R
charge can now be obtained by multiplying them with hW i. hW i will hence be the
order parameter for R symmetry breaking. Inserting this in Eq. (19.23) we find that
there will be a � term of the order of hW i, i.e. of the order of the gravitino mass
m3=2, as well as �.1/ijk` � 10�15=MP. On the other hand, terms which have odd ZR

4

charge cannot be obtained by multiplying them by e�b hSi; these are precisely the R
parity violating couplings �i, �.0/, �.1/ and �.2/ in Eq. (19.19), showing again that
matter parity will not be broken.

Phenomenology

The suppression of the �.1/ term leads to a situation in which dimension five proton
decay will be unobservably small. Therefore, proton decay will proceed through
dimension six operators mediated by gauge boson exchange.

In settings with discrete R symmetries one should worry about the cosmological
domain wall problem [379]. The domain walls form at the stage of R symmetry
breaking, typically the scale of supersymmetry breaking. For the case of gravity
mediation this is at an intermediate scale ofO.1012/GeV. Provided the Hubble scale
during inflation is below this scale, domain walls have sufficient time to form and
then they will be inflated away. The requirement that no domain walls are created
after inflation translates in an upper bound on the reheat temperature TR, which,
given the other bounds on TR in supersymmetric cosmology, appears rather mild.
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A discrete R symmetry may also be useful for inflationary scenarios. For
example, in [380], it is argued that a ZR

8 symmetry, with inflaton field � carrying
R charge 2, can be used to guarantee that the inflaton potential is flat near the origin
and give enough inflation.4

In summary, for the case of gravity mediated supersymmetry breaking, non-
perturbative effects naturally generate a � parameter of the order of the gravitino
mass. The symmetry ensures that the proton decay rate is well below the experimen-
tal limit and an exact matter parity is left that guarantees SUSY particles can only be
pair produced and the lightest SUSY particle is stable. Thus one is left with the usual
MSSM phenomenology with negligibly small corrections from higher dimension
terms.

19.3 Singlet Extensions

In Sect. 19.1.1 we have shown that the requirement of universality for the mixed
gauge anomalies constrains the order M of a potential ZR

M symmetry to be a divisor
of 24. As we have seen, this analysis carries over in an obvious way to singlet
extensions of the MSSM, since additional SM singlet fields cannot change the
constraints coming from the mixed gauge anomalies. In such extensions the MSSM
subsector still has to obey the criteria derived in Sect. 19.1.1. However, the extra
(singlet) fields can be subject to additional symmetries.

In what follows we concentrate on one simple singlet extension, i.e. the so-called
NMSSM, in which the singlet couples to the Higgs bilinear and there are cubic self-
interactions. A second singlet extension which solved the strong CP problem can be
found in [364].

NMSSM

In the NMSSM, there is one additional singlet N with superpotential

W D W
�D0

MSSM C �NHuHd C � N3 : (19.28)

Let us now consider what this implies for the order M of a ZR
M symmetry.

4Note, their definition of the order of the discrete symmetry differs from ours. What they call ZR
4

we call ZR
8 .
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Constraints from NMSSM Couplings

There are three different classes of ZR
M symmetries for which the N3-term of

Eq. (19.28) implies different charges for the singlet N, i.e.

M D 0 mod 3 ) no N3 term possible ; (19.29)

M D 1 mod 3 ) qN D M C 2

3
mod M ; (19.30)

M D 2 mod 3 ) qN D 2M C 2

3
mod M ; (19.31)

with qN the ZR
M charge of N.

M D 1 mod 3

Let us first consider the case M D 1 mod 3. The term �NHuHd together with
Eq. (19.8a) then implies

�
M C 2

3
mod M

�
C .4 mod 2�/ D 2 mod M

) M C 8

3
D 0 mod M : (19.32)

This equation has only one non-trivial solution for integer M, namely M D 4.
Note that in this case qN D 2 mod 4 and a linear term in N is also allowed in
the superpotential. Strictly speaking this is not the NMSSM but it is viable if the
linear term is very small. We will discuss later why this may be natural.

Following the analysis of Sect. 19.1.1 and using Eq. (19.30), the unique charge
assignment compatible with the Weinberg operator is shown in Table 19.3.

Table 19.3 Charge
assignments for the ZR

4

symmetry

M q10 q5 qHu qHd qN
4 1 1 0 0 2

Reprinted from Nuclear Physics
B 850, H.M. Lee, S. Raby, M.
Ratz, G.G. Ross, R. Schieren,
K. Schmidt-Hoberg, and P.K.S.
Vaudrevange, “Discrete R sym-
metries for the MSSM and its sin-
glet extensions,” Page 16, Copy-
right (2011), with permission
from Elsevier
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This is exactly the ZR
4 symmetry which we discussed in Sect. 19.2. We have

seen that the mixed gauge anomaly coefficients of this symmetry satisfy the Green–
Schwarz condition. Of course the singlet does not change these coefficients, so the
analysis still applies.

M D 2 mod 3

Let us now consider the case M D 2 mod 3. The term �NHuHd together with
Eq. (19.8a) then implies

2M C 8

3
D 0 mod M : (19.33)

The solutions to this equation are M D 2; 8. As we have noted earlier there are no
meaningful M D 2 R symmetries. The M D 8 case however is very interesting
since, in this case, qN D 6 mod 8 and the linear term in N is forbidden. Following
the analysis of Sect. 19.1.1 and using Eq. (19.31), the unique charge assignment
compatible with the Weinberg operator is shown in Table 19.4.

As the singlet does not contribute to mixed gauge anomalies, we know already
from Table 19.1 that the ZR

8 symmetry has AR
1�i�3.MSSM/ D  D 1.

The Hierarchy Problem

Searching for possible ZR
M symmetries in the context of the NMSSM we found

that there are only two potential candidates: a ZR
4 and a ZR

8 symmetry. The ZR
4

symmetry is actually a subgroup of the ZR
8 symmetry, hence both symmetries are

closely related. While the ZR
4 commutes with SO.10/ the ZR

8 only commutes with
SU.5/. In both cases all dimension four and five baryon and lepton number violating
operators are forbidden (except for the Weinberg operator), consistent with what we
found in Sect. 19.1.1.

Table 19.4 Charge
assignments for the ZR

8

symmetry

M q10 q5 qHu qHd qN
8 1 5 0 4 6

Reprinted from Nuclear Physics
B 850, H.M. Lee, S. Raby, M.
Ratz, G.G. Ross, R. Schieren,
K. Schmidt-Hoberg, and P.K.S.
Vaudrevange, “Discrete R sym-
metries for the MSSM and its sin-
glet extensions,” Page 16, Copy-
right (2011), with permission
from Elsevier
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A potential problem with NMSSM models arises because SUSY breaking breaks
the R symmetry and in radiative order a linear term in N is generated in the
superpotential. If the coefficient of this linear term is larger than the square of the
electroweak scale it will lead to a large VEV for the singlet N and therefore to a
destabilization of the SUSY solution to the gauge hierarchy problem. This has been
studied in detail by Abel [381] who showed that the only dangerous operators that
induce divergent tadpoles arise either from even terms in the superpotential or odd
terms in the Kähler potential. He also showed that an R symmetry can avoid such
terms because of the different R charges of the super- and Kähler potential (cf. also
[382]). From the charge assignments of Tables 19.3 and 19.4 for the singlet N and
the Higgs fields it is easy to show that the super- and Kähler-potentials actually
do have exactly this structure in both the ZR

4 and the ZR
8 case and so in both cases

radiative corrections do not destabilise the SUSY solution to the hierarchy problem.
The main difference between ZR

4 and ZR
8 is that the former allows a linear term

even at tree level. Does this mean that it is necessary to have the full ZR
8 symmetry

when building the NMSSM? In effective theories, such as those describing the
massless degrees of freedom in string compactifications, the superpotential starts
with cubic terms in the fields and the linear term only appears through the coupling
of the singlet field to fields acquiring VEVs. If the only (non-moduli) fields, �,
with VEVs above the electroweak scale are in the hidden sector the coupling
will be suppressed by messenger field masses, M�, which may be as large as
the Planck scale. Allowing for trilinear couplings to messenger fields as well as
trilinear couplings between messenger and hidden sector fields and assuming no
additional symmetries, the leading term in the superpotential after integrating out
the messenger fields is N�4=M2� with the messenger scale M�. Taking Planck
scale messengers, the constraint that this should not disturb the hierarchy is that
h�i � p

MWMP which is satisfied if the dominant VEV comes from the SUSY
breaking sector. In this case it is sufficient to impose just the ZR

4 symmetry when
building the NMSSM.

The role of the SM singlets  .i/2 with R-charge 2 (such as N for the case ZR
4 ) has

recently been discussed in the context of singlet (moduli) stabilization [276]. There
it was found that for a superpotential with generic coefficients the number of singlets
with R-charge 2 should not exceed the number of fields �.j/0 with R-charge 0 since

otherwise the F-term conditions would overconstrain the system. Moreover, the .i/2
fields pair up with an equal number of �. j/0 fields. That is, for generic superpotential
coefficients one might not expect to find vacua with an unbroken ZR

4 symmetry and
a massless singlet with R-charge 2. However, it is quite conceivable that there are
symmetries between the F-terms. In such a situation the  .i/2 � �

.j/
0 mass matrix

won’t have full rank such that one is effectively left with one (or more) singlet(s)
with R-charge 2. It will be interesting to see if this situation can be realized in string
models in which there are additional symmetries, such as D4 [383, 384], relating the
superpotential coefficients.
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Non-perturbative Effects

Non-perturbative effects may also be important in determining the low energy
phenomenology. From Eq. (19.23) we see that the superpotential has a term of the
form

�Wnp D B0 e�b S (19.34)

with a constant b. This parametrizes the non-perturbative effects discussed above,
and may be interpreted as a hidden sector gaugino condensate. It provides the order
parameter for local supersymmetry and generates the gravitino mass

h�Wnpi
M2

P

� h��i
M2

P

� m3=2 : (19.35)

�Wnp has R-charge 2 (cf. the discussion in Sect. 19.2) and similar non-perturbative
effects can contribute to further terms in the superpotential. The crucial property of
the non-perturbative couplings is that they are naturally suppressed. To parametrize
these effects we denote by a superfield Y a non-perturbative term of the form given
in Eq. (19.34) (scaled by the factor M�2

P ) carrying R-charge 2 and we construct the
superpotential involving Y that is consistent with the relevant R symmetry.

The lowest superpotential terms in Y have the form

�WZR
4

D Y C Y2N C Y N2 C Y Hu Hd

� m3=2M
2
P C m23=2 N C m3=2 N

2 C m3=2Hu Hd ; (19.36)

�WZR
8

D Y C Y2
�
N C Y N2 C Y Hu Hd



� m3=2M
2
P C m23=2 N C m33=2

M2
P

N2 C m33=2
M2

P

Hu Hd : (19.37)

All of these terms have magnitude determined by the gravitino mass scale. For
gauge mediation this scale can be very small and these terms negligible. For gravity
mediation however the gravitino mass scale is the scale of supersymmetry breaking
in the visible sector and the unsuppressed terms cannot be neglected. In this case,
the magnitude of the �WZR

4
terms is such as to reproduce the superpotential of

the S-MSSM [385, 386], where, apart from the usual NMSSM couplings also
holomorphic mass terms for the singlets and the Higgs fields of the order m3=2 are
introduced. This extension of the SM has been shown to significantly reduce the fine
tuning needed to accommodate the LEP Higgs mass bound [385, 386]. This general
NMSSM [GNMSSM] has been further studied in [288, 387, 388] where they have
shown that it minimizes the amount of fine-tuning. Our analysis yields a justification
for the small holomorphic terms, which have so far just been imposed by hand.
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Interestingly the form of the non-perturbative effects is very sensitive to the
underlying symmetry. For the case of ZR

4 there are additional unsuppressed linear
and quadratic terms in N as well as a non-perturbative contribution to the Higgsino
mass. For the case of ZR

8 only the linear term in N is unsuppressed. Because the
magnitude of all these terms is determined by the gravitino mass they will not
disturb the SUSY solution to the hierarchy problem. However, for the case of gravity
mediation, the terms cannot be neglected and may be expected to significantly
change the NMSSM phenomenology. Given the different non-perturbative terms
appearing in the ZR

4 andZR
8 we may expect these to have different phenomenological

implications.

19.4 Conclusions

We have discussed possible discrete symmetries for the MSSM which commute
with SU.5/. We have seen that, in order to address the � problem, these have
to be R symmetries. We have surveyed all possible discrete ZR

M symmetries.
Anomaly cancellation requires that the order M be a divisor of 24. We identified
5 phenomenologically viable symmetries for the MSSM.

The simplest of the 5 MSSM symmetries is a ZR
4 which commutes with SO.10/.

This symmetry forbids all R-parity violating couplings, dimension five proton decay
operators and the � term at tree-level while allowing the usual Yukawa couplings
and the neutrino mass operator. At the non-perturbative level the � term and the
dimension five proton decay operators are generated. We argued that in settings in
which supersymmetry breaking is related to some non-perturbative dynamics the �
term will be of the order of the MSSM soft terms. In particular, in gravity mediation
we will have� � m3=2 and coefficients of the dimension five proton decay operators

�
.1;2/

ijk` � m3=2=M2
P, i.e. sufficiently suppressed. Thus the ZR

4 symmetry provides
us with a simultaneous solution to the arguably two most severe problems of the
MSSM.

We have discussed the role of discrete symmetries in singlet extensions of the
MSSM. There are two possible symmetries consistent with the structure of the
NMSSM, ZR

4 and ZR
8 , both of which are capable of solving the hierarchy problem.

The ZR
8 allows the usual couplings while forbidding the linear term for the singlet at

the perturbative level. In the ZR
4 case, one obtains holomorphic mass terms for the

singlet and the Higgs at the non-perturbative level. We have argued that the size of
such terms is of the order m3=2, leading to an GNMSSM-like scheme in which the
smallness of the explicit mass terms for the singlets and Higgs finds an explanation.

Finally, in Chap. 23 we describe how to embed the ZR
4 into string theory.

Specifically, in [276], a Z2 � Z2 orbifold with this ZR
4 was constructed with the

exact MSSM spectrum below the compactification scale. The ZR
4 originates from

the Lorentz symmetry of compactified dimensions. At the non-perturbative level
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the � term may be generated as a consequence of the ZR
4 anomaly. There is an exact

matter parity and dimension five proton decay is well below experimental limits.

Appendix: Discrete Anomalies in the Path Integral Approach

In this appendix we re-derive Abelian discrete anomalies with the path integral
method, following [389, 390]. Among other things, we will describe how this allows
us to understand the discrete version of the Green–Schwarz mechanism.

Path Integral Derivation of Anomalies

Consider a theory described by a Lagrangian density L with a set of fermions

 D Œ .1/; : : : ;  .M/�, where  .m/ denotes a field transforming in the irreducible
representation (irrep) R.m/ of all internal symmetries. A general transformation

 ! U
 or, more explicitly,

2
64
 .1/

:::

 .M/

3
75 !

0
B@
U.1/ 0

: : :

0 U.M/

1
CA

2
64
 .1/

:::

 .M/

3
75 ; (19.38)

which leaves L invariant (up to a total derivative) denotes a classical symmetry.
A classical symmetry implies that certain correlators vanish at the classical level.

To see this, consider the correlator

Cn1:::nM D ˝
. .1//n1 � � � . .M//nM ˛ : (19.39)

Now, if the field combination . .1//n1 � � � . .M//nM is not invariant under the
symmetry transformation, we arrive at the (premature) conclusion that Cn1:::nM D 0.

Classical chiral symmetries can be broken by quantum effects, i.e. have an
anomaly. Specifically, consider a chiral transformation


.x/ ! 
 0.x/ D exp
�
2 i˛ PL



.x/ ; (19.40)

where ˛ D ˛anomTanom with Tanom denoting the generator of the transformation and
˛anom being a parameter, and PL is the left-chiral projector.

We wish now to show that this implies that vanishing correlators at the classical
level may appear at the quantum level. To this end, write the correlator as a path
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integral,

Cn1:::nM D
Z
D
 D
 . .1//n1 � � � . .M//nM ei S ; (19.41)

where S denotes the action, which is left invariant under (19.40). Now recall that
under the transformation (19.38) the path integral measure undergoes a non-trivial
change [391, 392],

D
 D
 ! J.˛/D
 D
 ; (19.42)

where the Jacobian of the transformation is given by

J.˛/ D exp

�
i
Z

d4xA .˛/

	
: (19.43)

The crucial observation is that in the presence of a non-trivial Jacobian the
full quantum correlator can be invariant. This is true regardless of whether the
transformation (19.38) is continuous or discrete, or whether it is gauged or global.

The anomaly function A appearing in (19.43) decomposes into a gauge and a
gravitational part [393–395],

A .˛/ D Agauge.˛/C Agrav.˛/ ; (19.44)

with

Agauge.˛/ D 1

16 �2
Tr
�
˛F eF �

; (19.45)

Agrav.˛/ D � 1

192 �2
ReR Tr Œ˛� : (19.46)

We have suppressed index contractions, i.e. F eF D F�� eF�� . Here F�� D
ŒD�;D�� is the field strength of the gauge symmetry, such thatF�� D .@�A��@�A�/
for a U(1) symmetry, F�� D Fa

�� Ta for non-Abelian gauge groups, and eF�� D
1
2
"���F� denotes its dual. Similarly, R represents the Riemann curvature tensor

and ReR D 1
2
"���R

��
�� R��� . The trace ‘Tr’ runs over all internal indices. For a

non-Abelian gauge theory the factor

1

16�2

Z
d4xTr.F�� eF��/ D 1

32�2

Z
d4x.F��a eF a

��/ 2 Z (19.47)

with the convention Tr.Ta Tb/ D 1
2
ıab.
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Now we specialize to the case where ˛ is a ZM transformation given by ˛ D
2�
M q. f / with integer values of q. f /.

J.˛/ D exp

0
@i 2�

X

r. f /

.2 `
�
r. f /

q. f //

M

1

32 �2

Z
d4x.F��a eF a

��/

1
A : (19.48)

For the anomaly to be absent, i.e. J.˛/ D 1, we arrive at the conditions [389, 390]

G � G � ZM W
X

r. f /

`
�
r. f /

q. f / D 0 mod � ; (19.49a)

grav � grav � ZM W
X
m

q.m/ D 0 mod � ; (19.49b)

where [cf. Eq. (19.3)]

� D
�
M for M odd ;
M=2 for M even

and q.m/ denotes the ZM charge. The first sum runs over all irreducible represen-
tations r. f / of G with Dynkin index5 `.r. f // while the second sum runs over all
fermions. Our conventions are such that `.N/ D 1=2 for SU.N/ and `.N/ D 1 for
SO.N/. Equation (19.49) are the traditional discrete anomaly conditions [89, 359]
with the difference that the Z3M constraints do not appear. The issue of Z3M anomalies
is discussed in [364]. It is argued that they address the discrete symmetry only to
the extent that it is obtained by embedding into a U.1/. Otherwise it need not be
considered.

Green–Schwarz Mechanism and Re-derivation of ıGS

Consider a theory with simple gauge group G and an ‘anomalous’ Abelian gauge
factor U.1/anom. Under U.1/anom the dilaton superfield S shifts according to

S ! S C i

2
ıGS�.x/ (19.50)

with � denoting the U.1/anom transformation, i.e. the chiral superfields follow the
rule

˚. f / ! e�iQ
. f /
anom � ˚. f / : (19.51)

5The Dynkin index is also given by `.r. f // D T.r. f // defined by T.r. f // ıAB D Tr.TA TB/ where
TA is the generator in the .r. f // representation.
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The corresponding transformation of the vector superfield Vanom is

Vanom ! Vanom C i

2
.����/ (19.52)

with Re�j�D0 D ˛. In what follows, we derive the Green–Schwarz coefficient ıGS

from the requirement of invariance of the full action.
The dilaton-dependent part of the Lagrangian density is

Ldilaton D �
Z

d4� ln
�
S C S� � ıGS Vanom



C
�Z

d2�
S

4
Tr W˛W

˛ C h.c.

�

Cgravity terms : (19.53)

The first line of this Lagrangian density is already invariant under the combined
transformations (19.50) and (19.52). The trace in the second line is supposed to run
over all gauge factors, including U.1/anom.

Decomposing the scalar component of the dilaton into a real and an imaginary
(or axionic) part,

Sj�D0 D s C i a ; (19.54)

leads to the usual couplings of the axion a

L � � a

8
FanomeFanom � a

8
FaeFa C a

4
ReR ; (19.55)

where F and Fanom denote the gauge field strength of G and U.1/anom respectively.
Hence, under a U.1/anom transformation with parameter ˛ the axionic Lagrangian

density shifts by

�Laxion D � ˛

16
ıGS FanomeFanom � ˛

16
ıGS F

aeFa C ˛

8
ıGS ReR : (19.56)

The Green–Schwarz term ıGS can now be inferred by demanding that the transfor-
mation of the axion a cancels the anomalous variation of the path integral measure.
The latter can be absorbed in a change of the Lagrangian density

�Lanomaly D ˛

32�2
FanomeFanom AU.1/3anom

C ˛

32�2
FaeFa AG�G�U.1/anom

� ˛

384�2
ReR Agrav�grav�U.1/anom : (19.57)
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The coefficients A are the anomaly coefficients given by

AU.1/3anom
D 1

3

X
m

.Q.m/anom/
3 D 1

3
Tr Q3anom ; (19.58a)

Agrav�grav�U.1/anom D
X
m

Q.m/anom D Tr Qanom ; (19.58b)

AG�G�U.1/anom D
X

r. f /

`.r. f //Q. f /anom ; (19.58c)

where Q.m/anom denotes the U.1/anom charge. The first two sums run over all left-
handed Weyl fermions while the last sum runs over all irreducible representations
r. f / of G and `.r. f // is the Dynkin index.

The axion shift allows us to cancel the grav–grav–U.1/anom, U.1/3anom and G �
G � U.1/anom anomalies by demanding �Lanomaly C �Laxion D 0. This fixes the
Green–Schwarz constant to be given by

2�2 ıGS D 1

24
Tr Qanom D 1

3
Tr Q3anom D AG�G�U.1/anom ; (19.59)

which is in agreement with the result obtained in a string computation [396].

Discrete Green–Schwarz Mechanism

The Green–Schwarz mechanism also works if we replace U.1/anom by a discrete
ZM . In this case the parameter ˛ is no longer continuous but ˛ D 2�n

M with some
integer n. Of course, there is no gauge field associated with the ZM , i.e. Eq. (19.52)
does not apply here. The discussion then goes as in the previous subsection. The
discrete Green–Schwarz constant is now defined in such a way that under the ZM

transformation of fields

˚. f / ! e�i 2�M q. f / ˚. f / (19.60)

the dilaton shifts according to

S ! S C i

2
�GS ; (19.61)

where�GS is fixed only modulo �,

� M�GS � 1

24
Agrav�grav�ZM D AG�G�ZM mod � : (19.62)



262 19 Discrete R Symmetries for the MSSM and Its Singlet Extensions

The anomaly coefficients can be obtained from Eq. (19.58) by replacing the
U.1/anom charges Q.m/anom by the ZM charges q.m/. Note that, unlike in the continuous
case, the transformation of the axion is only fixed modulo �. In the main body
of this chapter we obtain constraints on possible discrete symmetries and charge
assignments from the requirement that Eq. (19.62) possesses a solution, i.e. that the
AG�G�ZM coefficients for different gauge factors G coincide modulo �.

ZM and ZR
M Anomaly Coefficients

We start by looking at the MSSM amended by ordinary, i.e. non-R, discrete
symmetries, where the fermions have the same charges as the superfields ˚. f / and
turn then to the discussion of discrete R symmetries.

Anomaly Coefficients for Non-R ZM

The anomaly coefficients for discrete non-R ZM symmetries are well known [89,
359, 360],

AG�G�ZM D
X

r. f /

`.r. f // � q. f / ; (19.63a)

Agrav�grav�ZM D
X
m

q.m/ : (19.63b)

These coefficients can be re-derived in the path integral approach [390] (cf. Section
“Appendix: Discrete Anomalies in the Path Integral Approach”). In Eq. (19.63a) we
sum over all irreducible representations r. f / of G while in Eq. (19.63b) we sum over
all fermions. `.r. f // denotes the Dynkin index of the representation r. f /. The discrete
charges q are integers which are defined moduloM. Moreover, there might be mixed
U(1) anomalies if the normalization of the U(1) factors is known. The coefficients
are

AU.1/�U.1/�ZM D
X
m

q.m/ � �Q.m/2 (19.63c)

with Q.m/ denoting the normalized U.1/ charges. We will discuss this coefficient in
more detail below.

Traditional anomaly freedom requires that for all anomaly coefficients

A D 0 mod � : (19.64)
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However, discrete anomalies can be canceled by the Green–Schwarz mechanism, in
which case one has to demand

AG�G�ZM D AU.1/�U.1/�ZM D 1

24
Agrav�grav�ZM

D  mod � (19.65)

An important comment concerns the mixed U(1)–ZM anomaly coeffi-
cient (19.63c). Mixed U.1/ � U.1/ � ZM anomalies are mostly ignored as they
do not give meaningful constraints unless one knows the normalization of the
charges [90, 397]. Typically the sum in Eq. (19.63c) is not invariant under shifting
some discrete charges by M. To see this, let us consider the example of hypercharge.
We will denote the unnormalized U.1/Y charge by Q.m/Y . The anomaly coefficient
reads

A1 D
X
m

3

5



Q.m/Y

�2
q.m/ D  mod � : (19.66)

We have the freedom to shift the ZM charges by integer multiples of M, i.e. we can
define new ZM charges q0.m/ D q.m/ C k.m/M with k.m/ 2 Z. With the new charges
the condition for anomaly freedom is

3

5

X
m



Q.m/Y

�2 �
q.m/ C k.m/M

 D  mod � (19.67)

) A1 C 3

5
M
X
m

k.m/


Q.m/Y

�2

„ ƒ‚ …
DWn

D  mod � : (19.68)

We can choose the k.m/ such that n is an arbitrary integer because, for example,
QY.E/ D 1. Hence, we arrive at

A1 D  � 3

5
nM C m � ; m 2 Z : (19.69)

This can be rewritten as

M odd W 5A1 D 5 C .5m � 3n/M ; (19.70)

M even W 5A1 D 5 C .5m � 6n/
M

2
: (19.71)

Since 5m � 3n and 5m � 6n are arbitrary integers, we get

5A1 D 5 mod � : (19.72)
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Anomaly Coefficients for ZR
M Symmetries

Now consider a ZR
M symmetry, under which, by convention, the superpotential

transforms as

W ! e2� i qW =M W (19.73)

with qW D 2. Accordingly, the superspace coordinates transform as

� ! e2� i=M � ; (19.74)

such that d2� transforms oppositely to W . Superfields ˚. f / D �. f / C p
2 � . f / C

�� F. f / follow the law

˚. f / ! e2� i q. f /=M ˚. f / : (19.75)

Correspondingly, the fermions transform as

 . f / D e2� i .q. f /�1/=M  . f / : (19.76)

For discrete R symmetries, the anomaly coefficients read (cf. Section “Appendix:
Discrete Anomalies in the Path Integral Approach”)

AG�G�ZR
M

D
X

r. f /

`
�
r. f /
 � .q. f / � 1/C `.adjG/ ; (19.77a)

AU.1/�U.1/�ZR
M

D
X
m

.Q.m//2 � .q.m/ � 1/ ; (19.77b)

Agrav�grav�ZR
M

D �21C
X
G

dim.adjG/C #.U.1//C
X
m

.q.m/ � 1/ :

(19.77c)

Here q. f / denote the ZR
M charges of the superfields, the charges of the corresponding

fermions are shifted by one unit, q . f / D q. f / �1. In Eq. (19.77a) `.adjG/ D C2.G/
represents the contribution from the gauginos, #.U.1// denotes the number of
U(1) gauginos. The first and second term on the right-hand side of Eq. (19.77c)
represent the contributions from the gravitino and gauginos. A necessary condition
for anomaly cancellation is the universality

AG�G�ZR
M

D AU.1/�U.1/�ZR
M

D 1

24
Agrav�grav�ZR

M

D  mod � : (19.78)
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 is a constant, which is related to the discrete shift (19.61) of the axion via  D
�M�GS.

Summary of Anomaly Coefficients

The anomaly coefficients are given by

A
G�G�Z

.R/
M

D
X

r. f /

`.r. f // .q. f / � R/C `.adjG/ � R ; (19.79a)

A
U.1/�U.1/�Z

.R/
M

D
X
m

.Q.m//2 .q.m/ � R/ ; (19.79b)

A
grav�grav�Z

.R/
M

D R �
"

�21C
X
G

dim.adjG/C #.U.1//

#

C
X
m

.q.m/ � R/ ; (19.79c)

where we distinguish between discrete non-R (R D 0) and R (R D 1) symmetries.
#.U.1// denotes the number of U(1) gauginos. As discussed above, the mixed
U.1/ � U.1/ � Z.R/M anomaly is only meaningful if one knows the normalization.

In general, the coefficient A
U.1/�U.1/�Z

.R/
M

is not invariant under shifts of the Z.R/M

charges by integer multiples of M.



Chapter 20
Embedding Orbifold GUTs in the Heterotic
String

We have seen that supersymmetric orbifold GUTs retain many of the nice features
of 4D GUTs, such as gauge coupling unification and GUT relations for Yukawa
couplings. In addition, they replace the complicated GUT breaking and doublet-
triplet splitting sectors of the 4D theory by the very elegant mathematics of
orbifolding with discrete symmetries. They also open up new mechanisms for
supersymmetry breaking. However, on the down side, these orbifold GUT theories
are non-renormalizable and therefore an explicit cut-off must be introduced. In this
chapter we begin the discussion of embedding supersymmetric orbifold GUTs into
string theory. In a string theory, the arbitrary cut-off is replaced by the physical string
scale. Moreover, string theory has the benefit of also including quantum gravity.

String theory constructions, which attempt to obtain the MSSM in four dimen-
sions using the analysis of orbifolding and Wilson lines, have been around since
the work of Dixon et al. [398, 399] on the E8 � E8 heterotic string. MSSM-like
models were then constructed by Ibanez et al. [400–402] using the Z3 orbifold
and Wilson lines. The Z3 orbifold was used because it naturally gave multiples
of three families. However, there were inherent difficulties in obtaining realistic
models. It was found that R-parity was not, in general, guaranteed; dimension 5
proton decay was typically unsuppressed; Yukawa matrices typically had rank �3,
and many models contain additional exotic states which are chiral under the SM
gauge group.1 Finally, the normalization of hypercharge is typically different than
in SU.5/ and, moreover, states can exist with strange values of hypercharge [403].
Perhaps a different criterion for searching for string vacua, which can more naturally
produce MSSM-like models, is needed.

In recent years, the search for phenomenologically acceptable models has been
pursued in Type I and II string models, using the mathematics of D-branes. These

1States which are chiral under the Standard Model gauge group can only obtain mass by coupling
to the Higgs boson. Thus their mass is necessarily of order the weak scale. Hence there are stringent
experimental bounds on such states.
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attempts have also had many problems. This has the lead to the discussion of
F-theory models. For a recent review, see [404]. We won’t say more about these
constructions here. Instead, we focus on heterotic string models and in particular
E8�E8 heterotic string models, since these models naturally contain GUT subgroups
with the possibility of a realistic spectrum at the perturbative level, i.e.

E8 � E6 � SO.10/ � SU.5/ � SU.3/� SU.2/� U.1/: (20.1)

Phenomenological Guidelines

In the exploration of the string landscape in [405–410] the following guidelines are
used when searching for “realistic” string models.

1. We want to preserve gauge coupling unification.
2. We want to retain low energy SUSY as a solution to the gauge hierarchy problem,

i.e. why is MZ << MG.
3. Quarks and leptons come in complete 16 dimensional representations of SO.10/.

Thus we want to incorporate this fact directly in the construction.
4. We want to put the Higgs in the 10 dimensional representation of SO.10/.

Thus quarks and leptons are distinguished from Higgs by their SO.10/ quantum
numbers.

5. We want to preserve GUT relations for the third family Yukawa couplings.
6. We also want to use the fact that GUTs accommodate a “Natural” See-Saw scale,

O.MG/.

In order to accomplish the above, we use the intuition derived from Orbifold
GUT constructions, i.e. we want to embed orbifold GUTs into the heterotic string
[383, 411]. We also want to use local GUTs to enforce the family structure [383,
411–414]. We shall find that by imposing orbifold and local GUTs into our string
constructions, we are able to find many MSSM-like models.

As a final comment, the string theory analysis discussed here assumes supersym-
metric vacua at the string scale. As a consequence there are generically a multitude
of moduli. The gauge and Yukawa couplings depend on the values of the moduli
vacuum expectation values [VEVs]. In addition vector-like exotics,2 as well as
additional U.1/ gauge bosons, can have mass proportional to the moduli VEVs.
We will assume arbitrary values for these moduli VEVs, along supersymmetric
directions, in order to obtain desirable low energy phenomenology. Of course, at
some point supersymmetry must be broken and these moduli must be stabilized.
We save this harder problem for a later date. Nevertheless, we can add one more
guideline at this point. In the supersymmetric limit, we want the superpotential to
have a vanishing VEV. This is so that we can work in flat Minkowski space when
considering supergravity. Some of our models naturally have this property.

2By definition, a vector-like exotic can obtain mass without breaking any Standard Model gauge
symmetry.
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Brief Introduction to Heterotic String Theory

SO.32/ String in 10D

The classical action for the heterotic string is given by (for books on the subject, see
[415, 416]). In this chapter I can only outline the basic ideas.

S D � 1

2�

Z
d2�Œ

X9

�D0.@˛X
� @˛X� � 2i �@C �/

� 2i
X32

AD1
Q�A@� Q�A�:

(20.2)

The 2D coordinate is �˛ D .	; �/ � .�0; �1/ and we also define �˙ � 	˙� with

@˙ � 1
2
.@	 ˙ @� /. The metric in the conformal gauge is given by �˛ˇ D

��1 0
0 1

�
.

The fields X� are bosonic, while the fields  �; Q�A are Majorana-Weyl fermions,
i.e. one component fermions.

The fields satisfy Lagrange’s equations of motion which are free field equations
for closed strings with � D Œ0; �/. The solution of the equations of motion are given
by left and right movers. The right movers, given by the fields

X�.��/;  �.��/; � D 0; � � � ; 9 (20.3)

are supersymmetric with the supersymmetry transformations

ıX� D i�  �; ı � D �@�X�: (20.4)

The critical dimension for right movers is 10.
On the other hand the critical dimension for left movers is 26 if all are bosonic.

The left movers are given by the fields

X�.�C/; � D 0; � � � ; 9; Q�A.�C/; A D 1; � � � ; 32: (20.5)

Note, in 2D two real fermions is equivalent to one real boson. If all Q�A.�C/ have
the same boundary conditions then there exists an SO.32/ symmetry

Q�0A D OAB Q�B: (20.6)

The bosonic fields satisfy periodic boundary conditions and commutation rela-
tions

ŒX�.�; 	/; PX�.� 0; 	/� D i� ��� ı.� � � 0/: (20.7)
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They have the mode expansions

X�.��/R D 1

2
x� C 1

2
`2s p

� �� C i

2
`s
X
n¤0

1

n
˛�n e�2in��

(20.8)

and

X�.�C/L D 1

2
x� C 1

2
`2s p

� �C C i

2
`s
X
n¤0

1

n
Q̨�n e�2in�C

: (20.9)

The constants x�; p� describe the position and momentum of the string and `s �
m�1

Pl is the string length. ��� D diag.�1;C1; � � � ;C1/ is the 10D Lorentz metric.
In the light-cone gauge, only the transverse modes of the string are quantized and
we have for the right movers

Œ˛im; ˛
j
n� D m ımCn;0 �

ij; i; j D 1; � � � ; 8 (20.10)

and similarly for the left movers

Œ Q̨ im; Q̨ jn� D m ımCn;0 �
ij; i; j D 1; � � � ; 8: (20.11)

For the right moving fermions we have the anti-commutation relations

f �.��/;  �.� 0�/g D ����ı.�� � � 0�/: (20.12)

The fermions satisfy either periodic (Ramond) or anti-periodic (Neveu-Schwarz)
boundary conditions. Both are needed. We have the mode expansions

 �.��/ D
X
n2Z

d�n e�2in��

R sector (20.13)

X
r2ZC1=2

b�r e�2ir��

NS sector: (20.14)

The quantum anti-commutation relations for the transverse mode coefficients is
given by

fdim; djng D �ijımCn;0 (20.15)

fbir; b j
sg D �ijırCs;0: (20.16)

Now consider left moving fermions. For the (R) sector we have

Q�A.�/ D
C1X
�1

Q�An e�2in� ; n 2 Z (20.17)



20 Embedding Orbifold GUTs in the Heterotic String 271

with anti-commutation relations

f Q�Am; Q�Bng D ıAB ımCn;0: (20.18)

The anti-periodic (NS) sector satisfies the anti-commutation relations

f Q�Ar ; Q�Bs g D ıAB ırCs;0; r; s 2 Z C 1=2: (20.19)

In all cases we choose the modes with m; r negative as creation operators and
m; r positive as annihilation operators. We can then define the number operators

N˛ D
1X
mD1

˛i�m˛
i
m;

QN˛ D
1X

mD1
Q̨ i�m Q̨ im (20.20)

Nd D
1X
mD1

m di�m dim; Nb D
1X

rD1=2
r bi�r b

i
r: (20.21)

There are similar relations for the anti-commutators of the left moving fermions, Q�.
This is fine for the non-zero modes, but what about the zero fermionic modes in the
R sector. They satisfy the anti-commutation relations

fd�0 ; d�0g D ���: (20.22)

This is just the Dirac algebra and we can define � matrices satisfying

f� �; � �g D �2��� (20.23)

by

� � D p
2i d�0 : (20.24)

The ground state of d�0 must be irreducible representations of the Dirac algebra, i.e.
spinors of SO.1;D�1/. In the light cone gauge the ground state is then an irreducible
representation of SO.8/. As a consequence, the Neveu-Schwarz sector of the theory
gives space-time bosons, while the Ramond sector gives space-time fermions.

The mass operator for the string is given in terms of the total ten momentum
carried by the string, i.e. M2 D �p� p�. For the right movers we have

M2
R

4
D .N˛ C Nd/ R sector (20.25)

.N˛ C Nb � 1

2
/ NS sector:
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And for the left movers we have

M2
L

4
D N Q̨ C NQ�x � Qax (20.26)

where

x D
�
A NS
P R

: (20.27)

The constant ax is a normal ordering constant. We have

areal boson D 1

24
; areal A fermion D 1

48
; areal P fermion D � 1

24
: (20.28)

Thus we have3

QaA D 8.
1

24
/C 32.

1

48
/ D 1 (20.29)

and

QaP D 8.
1

24
/C 32.� 1

24
/ D �1: (20.30)

We finally obtain

M2
L

8
D .N Q̨ C NQ� C 1/ R sector (20.31)

.N Q̨ C NQ� � 1/ NS sector:

For a closed string we have the constraint

M2
L jphysi � M2

R jphysi: (20.32)

Now let’s work out the massless sector of the theory. The physical states are tensor
product states of left and right movers. First consider the massless left moving states,
we have

Q̨ i�1 j0iL; Q�A�1=2 Q�B�1=2 j0iL: (20.33)

The first is a space-time vector, 8v , and the second is an SO.32/ adjoint. Now
consider the right moving massless states. We have

bi�1=2 j0iR; j8ciR D jPaiR: (20.34)

3We could have applied the same analysis to Eq. (20.25).
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The first is a space-time vector, 8v, and the second is a space-time spinor ground
state [spinor and bosonic representations of SO.8/ (or its SO.6/ subgroup) are
obtained similar to the analysis of SO.10/ in Sect. 5.7]. The weights of 8v are
given by

8v D .˙1; 0; 0; 0/ (20.35)

plus all permutations. While the weights of 8c are given by the states

8c D .˙1

2
;˙1

2
;˙1

2
;˙1

2
/ (20.36)

with an even number of positive signs.
Combining the left and right moving states into a tensor product we have

Q̨ i�1 j0iL ˝
(
bi�1=2 j0iR

j8ciR : (20.37)

In this sector we have 64 bosonic states containing a graviton .ij/, dilaton
Tr.ij/ .35 C 1/ and anti-symmetric tensor Œij� (28). We also have 64 fermionic
states which decompose into a 56 dimensional gravitino and eight dimensional
spinor. Then we also have the states given by

Q�A�1=2 Q�B�1=2 j0iL ˝
(
bi�1=2 j0iR

j8ciR : (20.38)

These correspond to 496 gauge bosons and gauginos of SUSY SO.32/. At higher
mass levels the theory gives massive SUSY SO.32/ supergravity with states in
Spin.32/=Z2.4

E8 � E8 String in 10D

Now let’s construct heterotic E8 � E8. In this case it is convenient to replace the 32
left moving fermions by 16 bosonic degrees of freedom.5 The action becomes

S D � 1

2�

Z
d2�Œ

9X
�D0

.@˛X
� @˛X� � 2i �@C �/

C
16X
ID1

@CXI
L@�XI

L� (20.39)

4 A GSO projection is needed to guarantee space-time SUSY.
5A discussion of the property of bosonization of fermions in 1 + 1 dimensions is discussed in more
detail in Sect. 20.0.1.
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with XI
L.�

C/ only left moving. The mode expansion is then given by

XI
L D xIL C PI

L �
C C i

2

X
n¤0

1

n
Q̨ In e�2in�C

(20.40)

with the constraint that

xIL D xIL C 2�LI : (20.41)

Thus we have compactified the 16 dimensions on a lattice given by

2LI �
16X
iD1

ni e
I
i 2 � 8 ˝ � 8; (20.42)

i.e. where � 8 is the root lattice of E8 and eIi are the simple roots of E8 � E8. The
Cartan matrix is given by

gij �
16X
ID1

eIi e
I
j : (20.43)

Since this 16 dimensional space is compactified, the momenta are quantized and we
have

PI 2 � 8 ˝ � 8 (20.44)

or

PI D f.n1; n2; n3; � � � ; n8/; .n1C1=2; n2 C 1=2; n3 C 1=2; � � � ; n8 C 1=2/gI
8X

iD1
ni 2 2Z:

(20.45)

This is for one E8 and the same is true for the second E8.6

We then have the mass operator for the left movers given by

M2
L

4
D N Q̨i C N Q̨I C 1

2

16X
ID1
.PI/2 � 1: (20.46)

6Note, if the coordinates are compactified on a particular lattice, then the momenta are compactified
on the dual lattice. However, the lattice � 8 is self-dual. Therefore the momenta also reside in the
weight space of E8 � E8.
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The massless modes for left movers are now given by

Q̨ i�1 j0iL; Q̨ I�1 j0iL; jP2 D 2iL: (20.47)

The right moving massless modes are the same as before. Thus the gravity sector is
unchanged. However the gauge sector is now

� Q̨ I�1 j0iL
jP2 D 2iL

	
˝
(
bi�1=2 j0iR

j8ciR

)
: (20.48)

This gives the gauge bosons and gauginos for E8 � E8 where the Q̨ I�1 j0iL give the
gauge bosons in the Cartan sub-algebra and the rest are given by the momentum
modes.

E8 � E8 String in 4D

Up until now we have found the massless states of the heterotic string in 10D. When
we first wrote down the heterotic string action we assumed that the conformal fields
in the light-cone gauge, Xi, propagated in the transverse target space with metric ıij.
Now we want to compactify six dimensions on a 6D spatial torus. In general the
action for the bosonic modes of the string in a non-flat background is given by

S D � 1

2�

Z
d2� ŒGij@˛X

i@˛Xj C @˛X
I@˛XI C �˛ˇAI

i@˛X
i@ˇX

I C �˛ˇBij@˛X
i@ˇX

j�

(20.49)

where Gij is the metric, Bij is an anti-symmetric tensor field and Ai is a Wilson line.7

Here we will take Bij D 0 and Gij; Ai D constants. Let us first consider the metric
Gab D RaRb˛a � ˛b where ˛a are the lattice vectors defining the torus. Later we
will introduce the Wilson lines. Starting with N = 1 SUSY in 10D where a spinor is
eight dimensional (if we don’t break SUSY) we obtain N = 4 SUSY in 4D. But we
want N = 1 SUSY in 4D, so we will orbifold the torus to break N = 4 SUSY to N = 1,
and also get a chiral theory. Consider the simplest case, and the first one studied
historically, a Z3 orbifold of the torus, T6 D .T2/3.

First let us just study the orbifold of T2. Consider the two torus defined by
modding out translations along the direction of the simple roots of an SU.3/ root

7Note if the backgrounds, G; B depend on X, then the model is equivalent to the non-linear sigma
model. If one requires that the theory remain conformally invariant, i.e. the relevant beta functions
vanish, one obtains at one loop the equations of motion for the fields G; B which are the Einstein
equations of gravity coupled to the anti-symmetric tensor field, see Chap. 3.4 of [415].
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lattice with roots

˛1 D .
p
2; 0/; ˛2 D .� 1p

2
;

r
3

2
/: (20.50)

In the light-cone gauge with the dynamical boson field, Xi; i D 1; � � � ; 8, we
choose to compactify the directions i D 1; � � � ; 6 on T6 and let i D 7; 8 correspond
to the transverse directions of space-time which are not compact. Consider now just
Xi; i D 1; 2 compactified on an SU.3/ torus. We have

xi D xi C 2�Li with Li D
2X

aD1
na ˛

i
a R; na 2 Z (20.51)

where

xi D xiL C xiR: (20.52)

The field Xi.�; 	/ also satisfies the closed string boundary conditions

Xi.� C �; 	/ D Xi.�; 	/C 2�Li: (20.53)

With these boundary conditions the field Xi.�; 	/ has the following mode expansion

Xi.�; 	/ D xi C Pi	 C 2Li� C i

2

X
n¤0

1

n
Œ˛in e

�2in.	��/ C Q̨ in e�2in.	C�/�: (20.54)

The momenta, Pi, take values in the dual lattice and we have

Pi D
2X

aD1

ma ˛
i�
a

R
; ma 2 Z (20.55)

with

˛�
1 D .

1p
2
;
1p
6
/; ˛�

2 D .0;

r
2

3
/ (20.56)

satisfying

˛�
a � ˛b � ıab: (20.57)
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We can also define Xi
L; X

i
R by

Xi
L.�

C/ D xiL C piL �
C C i

2

X
n¤0

1

n
Q̨ in e�2in �C

(20.58)

Xi
R.�

�/ D xiR C piR �
� C i

2

X
n¤0

1

n
˛in e

�2in ��

(20.59)

with

piL D 1

2
.Pi C 2Li/; piR D 1

2
.Pi � 2Li/; xi D xiL C xiR: (20.60)

It will be convenient to define complex coordinate, Z.�; 	/. We have

Z D X1 C iX2p
2

D zCp	C2L�C i

2

X
n¤0

1

n
Œ˛n e

�2in.	��/C Q̨n e�2in.	C�/�: (20.61)

The complex creation and annihilation operators satisfy the commutation relations

Œ˛�m; ˛n� D mınCm;0; Œ Q̨ �m; Q̨n� D mınCm;0; Œz�; p� D i: (20.62)

Similarly for the right moving fermions we define the complex fermion field


.��/ D 1p
2
. 1.��/C i 2.��//: (20.63)

We have the mode expansions


.��/ D
X
n2Z

dn e
�2in��

R sector (20.64)

X
r2ZC1=2

br e
�2ir��

NS sector (20.65)

the quantum anti-commutation relations given by

fd�m; dng D ımCn;0 (20.66)

fb�r ; bsg D ırCs;0: (20.67)

We shall also compactify the other two torii on SU.3/ lattices. For the three torii in
the complex plane we have Zi D X2i�1Ci X2ip

2
for i D 1; 2; 3 and correspondingly for

the right moving fermions we have 
 i.��/; i D 1; 2; 3 where Z4; 
4 are in the
transverse direction of our non-compactified space.
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The mass operator for right movers is given by

M2
R

4
D .NB C NF/C 1

2
. pR/2 � .aB C aF/ D .NB C NF/C 1

2
. piR/

2 �
�

0 ŒR�
1=2 ŒNS�

(20.68)

and the mass operator for left movers is

M2
L

4
D QNB C 1

2
. pL/2 C 1

2
.P/2 � QaB D QNB C 1

2
. pL/2 C 1

2
.P/2 � 1: (20.69)

The number operators are given by

NB D
1X
nD1
ŒW ˛�4�n˛

4
n W C W ˛4�n˛

�4
n W

C
X

iD1;2;3
W ˛�i�n˛

i
n W C

X
iD1;2;3

W ˛i�n˛
�i
n W�

QNB D
1X
nD1
ŒW Q̨ �4�n Q̨ 4n W C W Q̨4�n Q̨�4n W

C
X

iD1;2;3
W Q̨�i�n Q̨ in W C

X
iD1;2;3

W Q̨ i�n Q̨ �in W C
16X
ID1

W ˛I�n˛
I
n W�

NFŒR� D
1X
nD1

n ŒW d�4�nd
4
n W C W d4�nd

�4
n W

C
X

iD1;2;3
W d�i�nd

i
n W C

X
iD1;2;3

W di�nd
�i
n W�

NFŒNS� D
1X

rD71=2
r ŒW b�4�rb

4
r W C W b4�rb

�4
r W

C
X

iD1;2;3
W b�i�rb

i
r W C

X
iD1;2;3

W bi�rb
�i
r W�:

The normal ordering constants for real bosons and fermions are given by

aB D QaB D 1

24
; aF D � 1

24
C 1

4
.v0 � 1

2
/2; with v0 D

�
1
2

ŒR�
0 ŒNS�

: (20.70)

Each SU.3/ lattice is invariant under a 120ı rotation which defines a Z3
symmetry. Consider just one torus, we have for example Z1

0 D e2� i=3 Z1. Defining
the orbifold by T2=Z3 we find three fixed points in this torus given by the solution
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Fig. 20.1 The SU.3/ orbifold has three fixed points given by the x, filled circle and square at the
origin

to the equation

e2� i=3 z1f D z1f C L; L 2 SU.3/ root lattice (20.71)

(see Fig. 20.1).
Now we are ready to compactify six dimensions on the orbifold SU.3/3=Z3. The

three two torii are labeled by Zi; i D 1; 2; 3. And we orbifold by the rotation

Z0i D e2� ivi Zi (20.72)

where the twist vector, v, satisfies 3vi 2 Z. This is equivalent to a rotation � given by

� D expŒ2�i.v1J12 C v2J34 C v3J56/� � expŒ2�i.v � J/� (20.73)

where Jij correspond to the diagonal Cartan generators of SO.6/ in the ij plane and
J D .J12; J34; J56/. In order to preserve one supersymmetry in the 4D theory, one
requires that

P3
iD1 vi 2 2Z or equivalently that the � 2 SU.3/.8

The gravitinos arise from the right movers with quantum numbers, Eq. (20.36).
Under the twist we have

� j ˙ 1

2
;˙1

2
;˙1

2
;˙1

2
i D e2� i.v1J12Cv2J34Cv3J56/j ˙ 1

2
;˙1

2
;˙1

2
;˙1

2
i: (20.74)

The rotation acts on the first, second and third spin 1/2 state in the tensor product.
The fourth spin 1/2 state is untouched. The first three spin states transform as a 4 or

8Rotations by 4� on fermions is equivalent to the identity and one requires that the rotation
generators in SU.3/ are orthogonal to the U.1/ in the decomposition of SO.6/ ! SU.3/ � U.1/.
The U.1/ generator is given by J12 C J34 C J56 which gives

P3
iD1 vi D 0 (see Sect. 5.7 for the

definition of vector and spinor representations in SO.10/, since the mathematics is identical for
any SO.2N/ group).
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N4 representation of SO.6/. Under the SU.3/ subgroup of SO.6/ the 4 decomposes
into a 3 C 1 and since the rotation is an element of SU.3/ it only acts on the triplet;
leaving one supersymmetry unbroken. This breaks the N = 4 supersymmetry in 4D
down to N = 1 and we are able to obtain a chiral gauge theory. Note, if v3 D 0, then
the rotation is in SU.2/ and we remain with N D 2 SUSY in 4D.

Our six torus is a direct product of three versions of Fig. 20.1. The string degrees
of freedom include closed strings which are free to propagate anywhere in the
torus. This includes modes which wind around the torus as in Eq. (20.54). The mass
operator for these modes is unchanged. However, only states which are invariant
under the orbifolding are left in the spectrum. To understand this better we need to
resort to a bit more mathematics.

We defined the 6D orbifold by ˝ D T6=P where P is a point group such as
the Z3 under consideration. In general ˝ D R6=S where R6 is the 6D flat Riemann
space and S is called the space group of transformations. In most cases these two
definitions are equivalent [417]. The space group of transformations is a discrete
version of rotations and translations. We have an element g 2 S given by g D .�; a/
such that when acting on a point in x 2 R6 we have

g W x ! �x C a (20.75)

where � 2 P and a is a translation. Given two elements g1; g2 2 S we obtain the
product rule

g2 ı g1 D .�2 �1; �2 a1 C a2/: (20.76)

Physical states on the orbifold are invariant under the action of S. However, it turns
out that, in order to avoid anomalies, we must also embed the space group into
the gauge group, E8 � E8.9 The action of the space group on the gauge group is a
homomorphism of the action on the 6D internal space. We define the action

G � .�; V/ 2 G � S (20.77)

where positions on the E8 � E8 gauge lattice transform as follows

XI
L ! �I

J X
J
L C �VI : (20.78)

The point group is represented either as an automorphism, �, or a shift, V . For
example, when acting with a rotation on the fermionized bosons


 I
L.�

C/ DW e2iXI
L.�

C/ W (20.79)

9In the heterotic string, this statement is a consequence of modular invariance, which is a subject
which goes way beyond the scope of these lectures. Modular invariance is the reason why string
theory is finite, i.e. no loop divergences. See vol. 2 of [415] or Chap. 6 of [416].
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we have


 0I
L.�

C/ D e2� iV
I

 I
L.�

C/ (20.80)

which implies

XI
L ! XI

L C �VI : (20.81)

Physical string states are necessarily invariant under the product,

S ˝ G : (20.82)

The action of G ; S on the left and right movers is given by

GjPiL D e2i.�V/� OPj�PiL (20.83)

S.˛i�n j0iR;L/ D � .˛i�n j0iR;L/
G. Q̨ I�n j0iL/ D �I

J. Q̨ J�n j0iL/
S .bi�r j0iR/ D .��1/ij .bj�r j0iR/

where OP is the momentum operator. We have a closed string satisfying

XI
L.� C �; 	/ D GXI

L.�; 	/C � I D �I
J X

J
L.�; 	/C �VI : (20.84)

A rotation on the fermion degrees of freedom is represented by a gauge twist V in
the boson lattice. Thus in our case we take �I

J D ıI J then a solution is given by

XI
L.�

C/ D xIL C .PI C VI/ �C C i

2

X
n¤0

1

n
Q̨ In e�2in�C

: (20.85)

Before discussing the massless spectrum of the orbifolded string, there is one
further condition we need to discuss. Not all shift vectors,V, are allowed by modular
invariance [398, 399, 418, 419]. In fact for a ZN twist, the shift vectors must satisfy
the constraint

N.V2 � v2/ D 0 2 2Z: (20.86)

Consider now the transformation of the physical states. The gauge bosons are
given by

Q̨ I�1 j0iL ˝ bi�1=2 j0iR; jPIiL ˝ bi�1=2 j0iRI with i D 1; � � � ; 8; P2 D 2:

(20.87)
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The invariant states satisfy

P � V � ri � v 2 Z (20.88)

where ri; i D 1; 2; 3; 4 are the eigenvalues of the rotation generators. We have plus
or minus the vectors

r1 D .1; 0; 0; 0/; r2 D .0; 1; 0; 0/; r3 D .0; 0; 1; 0/; r4 D .0; 0; 0; 1/:

(20.89)

The vector r4 is the non-compact direction and thus gives the transverse components
of the gauge bosons. Thus for the gauge symmetry we have P�V 2 Z and it is broken
to a subgroup,H 2 E8�E8. For example, let us take the twist vector on the 6D torus
SU.3/3 as

v D 1

3
.1;�1; 0; 0/: (20.90)

We obtain massless gauge bosons in H for i D 7; 8 and a chiral multiplet in the
adjoint representation of H for i D 5; 6. All of these states describe closed strings
moving in the 8D bulk and they are massless irreducible representations of N D 2

SUSY in 4D. This is due to the fact that we left one torus untouched by the twist.
Now consider the twisted sectors. Corresponding to each fixed point of the

orbifold there are so-called twisted sector states (see Fig. 20.2). The mode expansion
in the kth twisted sector with kvi ¤ 0 is given by

Zi.� C �; 	/ D e2� ikvi Zi.�; 	/ (20.91)

Fig. 20.2 Two examples of closed strings on the twisted SU.3/ orbifold. Inside the dotted lines
defines the fundamental domain of the Z3 orbifold. It looks like a Hamentashen (three sided
cookie). There is a winding mode on the left and a twisted sector state on the right
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with solution

Zi.�; 	/ D zif ;k C i

2

X
n¤0

f˛
i
.nCkvi/

n C kvi
e�2i.nCkvi/.	��/ C

Q̨i
.n�kvi/

n � kvi
e�2i.n�kvi/.	C�/g

(20.92)

where zif ;k are the fixed points in the kth twisted sector, i.e. applying the twist k
times. Note, all twisted sectors must be summed over. For the right moving fermions
we have

 i
R.	 � � � �/ D e2� i.v0�1=2Ckvi/  i

R.	 � �/ (20.93)

with solution

 i
R.	 � �/ D

8̂
<
:̂

P
n2Z di.nCkvi/

e�2i.nCkvi/.	��/ ŒR�

P
r2ZC1=2 bi.rCkvi/

e�2i.rCkvi/.	��/ ŒNS�
: (20.94)

The creation and annihilation operators satisfy the commutation relations

Œ˛imCkvi
; ˛

�j
n�kvj

� D .m C kvi/ı
i;jınCm;0; Œ Q̨ imCkvi

; Q̨�jn�kvj
� D .m C kvi/ı

i;jınCm;0:

(20.95)

Similarly for the right moving fermions we have the quantum anti-commutation
relations given by

fdimCkvi ; d
�j
n�kvj

g D ıi;jımCn;0 (20.96)

fbirCkvi ; b
�j
s�kvj

g D ıi;jırCs;0: (20.97)

The mass operators for the twisted sectors (k ¤ 0) are given by

M2
R

4
D .NB.kv/C NF.kv// � .aB.kv/C aF.kv// (20.98)

M2
L

4
D QNB.kv/C 1

2
.P C kV/2 � QaB.kv/: (20.99)

with

NB.kv/ D
1X
nD1

ŒW ˛�4
�n˛

4
n W C W ˛4

�n˛
�4
n W

C
X

iD1;2;3

W ˛�i
�n�kvi˛

i
nCkvi

W C
X

iD1;2;3

W ˛i
�nCkvi

˛
�i
n�kvi W�
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QNB.kv/ D
1X
nD1

ŒW Q̨ �4
�n Q̨ 4n W C W Q̨ 4

�n Q̨ �4n W

C
X

iD1;2;3

W Q̨ �i
�n�kvi Q̨ inCkvi

W C
X

iD1;2;3

W Q̨ i
�nCkvi

Q̨ �in�kvi W C
16X
ID1

W ˛I
�n˛

I
n W�

NF.kv/ŒR� D
1X
nD1

Œn W d�4
�nd

4
n W Cn W d4

�nd
�4
n W

C
X

iD1;2;3

.n C kvi/ W d�i
�n�kvi d

i
nCkvi

W C
X

iD1;2;3

.n � kvi/ W di
�nCkvi

d�in�kvi W�

NF.kv/ŒNS� D
1X

rD1=2

Œr W b�4
�rb

4
r W Cr W b4

�rb
�4
r W

C
X

iD1;2;3

.r C kvi/ W b�i
�r�kvi b

i
rCkvi

W C
X

iD1;2;3

.r � kvi/ W bi
�rCkvi

b�ir�kvi W�:

The normal ordering constants for complex bosons and fermions are given by10

aB.kvi/ D QaB.kvi/ D 1

12
� 1

2
jkvij.1 � jkvij/; aF.kvi/ D 1

24
� 1

2
.kvi � v0/

2;

with v0 D
�

1
2

ŒR�
0 ŒNS�

: (20.102)

The normal ordering constant for the left movers is then given by

QaB.kv/ D 1 � 1

2

3X
iD1

jkvij.1 � jkvij/: (20.103)

10In general, the normal ordering coefficient for real bosons is given by

aB.�/ � �1
2

1X
nD0

.n C �/ D 1

24
� 1

4
�.1� �/ � � 1

48
C 1

4
.�� 1

2
/2: (20.100)

For real fermions we have

aF.�/ D �aB.�/: (20.101)
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20.0.1 Bosonization of Fermions

A complex free fermion in 1 + 1 dimensions can be represented by a real boson.11

We have the formula


.�˙/ DW e2i�.�˙/ W : (20.104)

If �.�˙/ has the mode expansion

�.�˙/ D �0 C p0 �
˙ C i

2

X
n¤0

1

n
˛ne

�2in�˙

; (20.105)

then we have


.�˙/ D exp.�2
X
n<0

1

n
e�2in�˙

˛n/ e
2i�0 e2i�

˙. p0C1=2/ exp.�2
X
n>0

1

n
e�2in�˙

˛n/:

(20.106)

Note, if


.�˙ C �/ D �
.�˙/; (20.107)

then the momenta, p0 2 Z, while if


.�˙ C �/ D 
.�˙/; (20.108)

then the momenta, p0 2 Z C 1=2.
Bosonization is a statement that the Green’s functions of the two sides of the

equality are identical. We have

h
.�˙/ 
�.� 0˙/i D 1

�˙ � � 0˙ D hW e2i�.�˙/ WW e�2i�.� 0˙/ Wi: (20.109)

The action for fermions is replaced by the corresponding action for bosons. In
particular, for right moving fermions we have

i

�

Z
d2� 
.��/@C
.��/ H) � 1

2�

Z
d2� @C�.��/@��.��/: (20.110)

11See, for example, Chap. 3.2.4, [415].
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Thus when we bosonize the right moving Ramond or Neveu-Schwarz fermions the
mass operator for right movers becomes (in the untwisted sector, see Eq. (20.68))

M2
R

4
D ONB C 1

2
.pR/2 C 1

2
.r/2 � 1=2 (20.111)

where r is the momentum vector of the bosonized fermion, r D .n1; n2; n3; n4/ for
NS fermions and r D .n1C1=2; n2C1=2; n3C1=2; n4C1=2/ for R fermions with
ni 2 Z. ONB now includes the bosonized fermion oscillator modes. In the kth twisted
sector [see Eq. (20.112)] we have

M2
R

4
D ONB.kv/C 1

2
.r C kv/2 � aB.kv/ (20.112)

with aB.kv/ D 1
2

� 1
2

P3
iD1 jkvij.1� jkvij/.

E8 � E8 Heterotic String Compactified on .SU.3//3=Z3

Orbifold with “Standard Embedding”

As a simple example of a string orbifold, consider .SU.3//3=Z3 with shift vector

v D .
2

3
;�1
3
;�1
3
; 0/ (20.113)

and gauge embedding

V D .
2

3
;�1
3
;�1
3
; 0; 0; 0; 0; 0/.0; 0; 0; 0; 0; 0; 0; 0/� .

2

3
; .�1

3
/2; 05/.08/:

(20.114)

V is only non-zero on the first E8. This is the so-called “standard embedding.”
Let’s consider the massless sector of the theory. Consider first the untwisted

sector with mass operators given in [see Eqs. (20.69), (20.111)]. The massless states
are

Q̨ I�1j0iL ˝ jriiR; jPIiL ˝ jriiR; Q̨ i�1j0iL ˝ jriiR with P2 D r2 D 2 (20.115)

subject to the constraint

P � V � r � v D Z: (20.116)
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The momentum vector r takes on values12

r D .˙1; 0; 0; 0/ and .˙1

2
;˙1

2
;˙1

2
;˙1

2
/ (20.117)

corresponding to space-time bosons and fermions, respectively. Since the theory
is supersymmetric, let’s just identify the massless space-time bosonic modes. The
non-compactified direction is given by ˙r4 D .0; 0; 0;˙1/. This gives us the two
helicity modes of gauge bosons which satisfy the constraint P � V D Z. The first 16
states are in the Cartan subalgebra of E8 � E8. All the non-Cartan generators for the
second E8 satisfy the constraint. Hence this E8 is unbroken. For the first E8, the only
non-Cartan generators which satisfy the constraint are given by

˙ .0; 1;�1; 05/; ˙.1;�1; 0; 05/; .03;˙1;˙1; 0; 0; 0/;
˙ 1
2
.C1;C1;C1; ŒC1;C1;C1;C1;C1�/ (20.118)

where the square bracket represents even sign flips. The first two vectors correspond
to the non-Cartan generators of SU.3/, while the latter two correspond to the non-
Cartan generators of SO.10/ and a 16 + 16 which, together with 6 U.1/ generators,
make a 78, i.e. the adjoint representation of E6. Thus the first E8 is broken to
SU.3/� E6.

Now consider the matter fields in the untwisted sector satisfying

P � V � r � v D Z (20.119)

with ˙ri; i D 1; 2; 3 and r1 D .1; 0; 0; 0/; r2 D .0; 1; 0; 0/; r3 D .0; 0; 1; 0/. We
have ri � v D 2

3
; mod.Z/ for i D 1; 2; 3. Thus we need P � V D 2

3
; mod.Z/. We

have the states satisfying this constraint given by

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

1
2
.C1;�1;�1; ŒC1;C1;C1;C1;C1�/
1
2
.�1;�1;C1; ŒC1;C1;C1;C1;C1�/

.0; 1; 0;˙1; 0; 0; 0; 0/

.1; 0; 0; ˙1; 0; 0; 0; 0/
.0;�1;�1; 0; 0; 0; 0; 0/
.�1;�1; 0; 0; 0; 0; 0; 0/

(20.120)

The states in the first two rows transform as a 3 of SU.3/ and a 16 of SO.10/,
while the next two transform as a 3 of SU.3/ and a 10 of SO.10/ and the last two
transform as a 3 of SU.3/ and singlets of SO.10/. Together they form the .3; 27/ of

12Underline means include all permutations.
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SU.3/ � E6. The states which satisfy ri � v D 1
3
; mod.Z/ transform as a .N3; 27/ of

SU.3/�E6. Recall, string theory is a first quantization, so the .3; 27/ and their charge
conjugates are the states in one complex scalar field with these quantum numbers.
Thus counting ri; i D 1; 2; 3 we find a multiple of 3.3; 27/ states of complex scalar
fields and their supersymmetric partners. Finally the states of the form

Q̨ i�1j0iL ˝ jrjiR (20.121)

give the transverse modes of a spin two graviton, complex dilaton and additional
moduli along with their supersymmetric partners.

Now consider the massless twisted sector states. The mass operators are given
in Eqs. (20.99), (20.103) and (20.112). Each torus contains three fixed points, thus
each twisted sector k D 1; 2 contains 27 fixed points. The twisted sector states with
k D 2 are the conjugates of the twisted sector states with k D 1, so we will only
consider k D 1. We have

M2
L

4
D QNB.v/C 1

2
.P C V/2 � 2

3
(20.122)

and

M2
R

4
D ONB.v/C 1

2
.r C v/2 � 1

6
: (20.123)

Without oscillator modes the left moving states satisfy the massless condition have
.PCV/2 D 4

3
and similarly the right movers satisfy the condition .rC v/2 D 1

3
, i.e.

these modes are given by

jP C ViL ˝ jr C viR: (20.124)

These conditions are satisfied by the left momenta

P � .0; 1; 1; 05/; .�1; 0; 0; ˙1; 04/; 1

2
.�1;C1;C1; ŒC1;C1;C1;C1;�1�/:

(20.125)

There are only two right momenta satisfying the massless condition. They are

� r1;
1

2
.�1; 1; 1;�1/: (20.126)
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Together they give the particle states in the chiral multiplet, .1; 27/.13 In addition
there are massless left moving oscillator modes given by14

Q̨�1�1=3jP C ViL; Q̨�2�1=3jP C ViL; Q̨ �3�1=3jP C ViL (20.129)

with 1
2
.P C V/2 D 1

3
. The left momenta satisfying this condition are given by

P � .08/; .�1;C1; 0; 05/: (20.130)

Hence at each fixed point we have 3.N3; 1/ chiral multiplets. In order for these states
to remain in the spectrum they should be invariant under the orbifold � gauge twist.
We have

e2� iŒ.PCV/�V�.rCv/�v�� jphysicali D jphysicali (20.131)

where � acts on the oscillator modes [Eqs. (20.73) and (20.83)]. In this case all the
massless twisted sector states are invariant under the twists. Hence in the twisted
sector we find the states

81.N3; 1/C 27.1; 27/: (20.132)

20.0.2 Wilson Lines

The holonomy associated with a Wilson line was defined as

Ti D expŒi
I

AI
i dx � HI� (20.133)

13Note, the vectors in Eq. (20.125) satisfy

P C V D .
2

3
;
2

3
;
2

3
; 05/; .�1

3
;�1
3
;�1
3
; ˙1; 04/; 1

2
.
1

3
;
1

3
;
1

3
; ŒC1;C1;C1;C1;�1�/:

(20.127)

Thus the vectors sit at the origin in the shifted SU.3/ lattice. Note, the simple roots of SU.3/ are
given by the unit vector ˛1 D e1 � e2 and ˛2 D e2 � e3 with ei � ej D ıij.
14Note, the vectors in Eq. (20.130) satisfy

P C V D .
2

3
;�1
3
;�1
3
; 05/; .�1

3
;
2

3
;�1
3
; 05/: (20.128)

Thus the vectors are in the N3 of the shifted SU.3/ lattice.
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where HI is one of the Cartan generators and
H
AI
i dx � 2� aIi or

Ti D expŒ2�i aIi � HI�: (20.134)

When acting on a state with gauge momentum P we have

Ti jPiL D exp.2�i ai � P/jPiL: (20.135)

When do we pick up this phase? When we translate in the direction of the Wilson
line. For example, the orbifold boundary conditions were given by

Xi.� C �; 	/ D .�X/i.�; 	/C 2�Li: (20.136)

In the gauge sector, we then have the additional shift

XI.�C C �/ D XI.�C/C �VI C �

6X
iD1

mi a
I
i (20.137)

with mi 2 Z. Note the integer value of mi depends on the number and direction of
the shifts necessary to return to the fixed point after a twist. Therefore twisted sector
states are distinguished by the fixed point they sit on. As a consequence, the gauge
momenta get translated by

PI ! PI C VI C
6X

iD1
mi a

I
i : (20.138)

The Wilson lines associated with discrete orbifold parities are also discrete. For
example in the case of SU.3/=Z3, the action of the twist on the simple roots,

�˛1 D ˛2 (20.139)

implies that

a1 D a2: (20.140)

Also

�˛2 D �˛1 � ˛2 (20.141)

implies that

a2 D �a1 � a2 D �2a2 or 3a2 D 3a1 D 0 (20.142)

up to gauge lattice shifts.
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In the untwisted sector the gauge momentum satisfy

P � V 2 Z; P � Xnf 2 Z (20.143)

where Xnf D V C P
mi ai and the index nf specifies the number of translations

associated with the particular fixed point. Hence the Wilson line further breaks the
gauge symmetry. In the twisted sectors the mass shell condition is given by

M2
L

4
D QNB.v/C 1

2
.P C kXnf/

2 � QaB.v/: (20.144)

Moreover, twisted sector states may have different local gauge symmetries. Finally,
modular invariance requires

NŒv2 � .Xnf/
2� 2 2Z: (20.145)

There are also additional constraints on the allowed Wilson lines which we consider
in later sections.

20.1 Embedding Orbifold GUTs in the Heterotic String

This section is based on the results of Kobayashi et al. [383, 411]. We have
already discussed many of the properties of orbifold GUT field theory models.
To summarize, these GUT models utilize properties of higher-dimensional field
theories, and have some advantages over conventional 4D GUTs. Recall, for
example, GUT symmetry breaking can be accomplished by an orbifold parity,
instead of by a complicated Higgs sector. The doublet-triplet splitting problem,
which plagues conventional GUTs, can also be solved by assigning appropriate
orbifold parities to the doublet and triplet Higgs bosons. Note, however, that
like all field theoretical models in higher dimensions, these GUT models are not
renormalizable quantum field theories. They can only make sense as low-energy
effective theories of some more fundamental theory with better ultra-violet (UV)
behavior. Our string models provide exactly such UV completions.

To make the connections between string and field theoretical models more
concrete, we consider the example of a 5D orbifold GUT model with bulk gauge
group E6 studied in Chap. 16. In this model, the extra dimension is taken to be
an orbicircle S1=Z2 and the 4D effective theory has a Pati-Salam (PS) symmetry,
SU4C ˝ SU2L ˝ SU2R. We shall construct the UV completion of this model in the
heterotic string.

The technical apparatus we adopt to build string models is the simplest Abelian
symmetric orbifold compactification of the heterotic string. More specifically, we
consider a non-prime-order Z6 orbifold (or equivalently, Z2 � Z3) model with the
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orbifold twist vector v6 D 1
6
.1; 2;�3/. To achieve three chiral PS families at low

energies, we also introduce several (in fact, two) discrete Wilson lines [400].15

It is obvious that the third compactified complex dimension in the Z6 model has
a Z2 symmetry, hence it can consistently be taken to be the root lattice of the SO4

Lie algebra. The string models are effectively 5D when the length of one of the
SO4 simple roots is large compared to the string scale, while all other dimensions
are kept comparable to the string scale (i.e. the geometry of the compactified space
is equivalent to that of the orbifold GUTs, S1=Z2). In this limit, the Z6 heterotic
models are similar to the orbifold GUT models in the following respects:

• After acting with the Z3 orbifold only on the two small torii we obtain an effective
6D space, M4�T2. The remaining torus has one large and one small radius. Thus
it is effectively a 5D theory on M4 � S1. In addition the resulting theory has an
N D 2 supersymmetry.16

• The N D 2 supersymmetry is then broken to that of N D 1 in 4D by the Z2
orbifold twist and the “bulk” gauge group is broken to two different regular
subgroups at the two inequivalent fixed points by a degree-2 non-trivial gauge
embedding and Wilson line. Note, these correspond to so-called ‘local GUTs’ in
the literature [410, 427]. The surviving gauge group in the 4D effective theory is
the intersection of groups at the fixed points. It is the PS group in our models.
We have an E6 symmetry in the 5D bulk which is broken at the two fixed points
to SO10 and SU6 � SU2 respectively.

• Untwisted-sector and twisted-sector states that are not localized on the Z2 fixed
points of the SO4 lattice can be identified with the “bulk” states of the orbifold
GUT. Interpretation of the Kaluza-Klein (KK) towers of the bulk gauge and
matter fields agree in the string-based and orbifold GUT models.

• Twisted-sector states that are localized on the Z2 fixed points of the SO4 lattice
have no field theoretical counterparts, although they can correctly be identified
with the “brane” states of the orbifold GUT. In the orbifold GUT models, these
states are only constrained by the requirement of (chiral) anomaly cancellation.

Of course, string theoretical models are more intricate than the corresponding
field theoretic orbifold GUT models. They need to satisfy more stringent consis-
tency conditions and thus they are physically more constrained. We find it is highly
non-trivial (or impossible) to implement all the features of the orbifold GUTs. For
example, we cannot arbitrarily place the three families of quarks and leptons in

15Prime-order orbifold models (such as the Z3 orbifold models) with Wilson lines [401, 420–
424] and non-prime-order orbifold models without Wilson lines [425, 426] have been extensively
studied in the literature. Non-prime-order orbifold models with Wilson lines, on the other hand,
possess a number of complications, and to our knowledge they have not been studied to the same
extent. Our work can be regarded as the first serious attempt at constructing three-family models
from non-prime-order orbifolds.
16By N D 2 supersymmetry in 5 or 6D, we mean the minimal number of supersymmetries in these
dimensions, (i.e. the fermions satisfy the pseudo-reality condition). It reduces to N D 2 in 4D by
dimensional reduction and is sometimes called N D 1 supersymmetry in the literature.
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the bulk or on either brane. Moreover, the very act of obtaining three families,
along with their respective locations, is fixed by the requirement that the gauge
embeddings and Wilson lines have to satisfy the modular invariance conditions. In
addition, we cannot utilize the orbifold projections to remove all the .6; 1; 1/ color-
triplet states as in the SO10 orbifold GUTs and at the same time obtain three families.
We also find many massless states in unconventional representations under the SM
gauge group. These exotic states are commonplace in almost all known three-family
models. Whether these models can give rise to satisfactory phenomenology needs
more detailed knowledge of the low-energy effective actions. A class of models
with MSSM symmetry in 4D is discussed next. These models come very close to
having a realistic spectrum with non-trivial Yukawa matrices and Majorana neutrino
masses.

To summarize, in Chap. 16 we introduced a novel orbifold GUT in 5D with
gauge group E6. It is a novel 5D model with many nice phenomenological features.
Now in Sect. 20.3 we discuss the heterotic string construction of the model. Using
this model as a guide we compare the heterotic string construction with generic
orbifold GUT models by restricting the compactified space to a specific type (which
is referred to as the orbifold GUT limit). We show the equivalence between the
matter states (in the untwisted and some twisted sectors) in string-based models
and the bulk states in orbifold GUTs, as well as their KK excitations. We interpret
orbifold parities (for the bulk states) in the orbifold GUTs in string theory language,
and explain why the gauge embeddings and Wilson lines cannot project away all
the .6; 1; 1/ color-triplet states. These states may be needed to break the PS group to
that of the SM, as in the field theoretical model of Chap. 16. In addition the theory
has no chiral exotics. Finally, we show that the model has the very nice feature of a
non-Abelian D4 family symmetry which can constrain fermion mass matrices.

20.2 Heterotic String on a Z6 Orbifold

We compactify the theory on 6D torus defined by the space group action of
translations on a factorizable Lie algebra lattice G2˚SU.3/˚SO.4/ (see Fig. 20.3).
Then we mod out by the Z6 action on the three complex compactified coordinates

SO4 root latticeG2 SU3× ×

ls 2πR

Fig. 20.3 G2˚SU.3/˚SO.4/ lattice. Note, we have taken five directions with string scale length
`s and one with length 2�R  `s. This will enable the analogy of an effective 5D orbifold field
theory
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given by Zi ! e2� iri�v6Zi, i D 1; 2; 3, where

v6 D 1

6
.1; 2;�3; 0/ (20.146)

is the twist vector, and r1 D .1; 0; 0; 0/, r2 D .0; 1; 0; 0/, r3 D .0; 0; 1; 0/.17 For
simplicity and definiteness, we also take the compactified space to be a factorizable
Lie algebra lattice G2 ˚ SU.3/˚ SO.4/ (see Fig. 20.3).

The Z6 orbifold is equivalent to a Z2 � Z3 orbifold, where the two twist vectors
are v2 D 3v6 D 1

2
.1; 0;�1; 0/ and v3 D 2v6 D 1

3
.1;�1; 0; 0/. The Z2 and Z3 sub-

orbifold twists have the SU.3/ and SO.4/ planes as their fixed torii. In Abelian
symmetric orbifolds, gauge embeddings of the point group elements and lattice
translations are realized by shifts of the momentum vectors, P, in the E8 � E8 root
lattice18 [401, 420, 423–425], i.e., P ! PC kVC lW, where k; l are some integers,
and V and W are the gauge twists and Wilson lines [400]. These embeddings are
subject to modular invariance requirements [398, 399, 418]. The Wilson lines are
also required to be consistent with the action of the point group. In the Z6 model,
there are at most three consistent Wilson lines [428, 429], one of degree 3 (W3),
along the SU.3/ lattice, and two of degree 2 (W2; W0

2), along the SO.4/ lattice.
The Z6 model has three untwisted sectors (Ui; i D 1; 2; 3) and five twisted

sectors (Ti; i D 1; 2; � � � ; 5). (The Tk and T6�k sectors are CPT conjugates of each
other.) The twisted sectors split further into sub-sectors when discrete Wilson lines
are present. In the SU.3/ and SO.4/ directions, we can label these sub-sectors by
their winding numbers, n3 D 0; 1; 2 and n2; n0

2 D 0; 1, respectively. In the G2
direction, where both the Z2 and Z3 sub-orbifold twists act, the situation is more
complicated. There are four Z2 fixed points in the G2 plane. Not all of them are
invariant under the Z3 twist, in fact three of them are transformed into each other.
Thus for the T3 twisted-sector states one needs to find linear combinations of these
fixed-point states such that they have definite eigenvalues, � D 1 (with multiplicity
2), ei2�=3, or ei4�=3, under the orbifold twist [428–430] (see Fig. 20.4). Similarly, for
the T2;4 twisted-sector states, � D 1 (with multiplicity 2) and �1 (the fixed points
of the T2;4 twisted sectors in the G2 torus are shown in Fig. 20.5). The T1 twisted-
sector states have only one fixed point in the G2 plane, thus � D 1 (see Fig. 20.6).
The eigenvalues � provide another piece of information to differentiate twisted sub-
sectors.

Massless states in 4D string models consist of those momentum vectors P and r
(r are in the SO.8/ weight lattice) which satisfy the following mass-shell equations

17Together with r4 D .0; 0; 0; 1/, they form the set of positive weights of the 8v representation of
the SO.8/, the little group in 10d. ˙r4 represent the two uncompactified dimensions in the light-
cone gauge. Their space-time fermionic partners have weights r D .˙ 1

2
;˙ 1

2
;˙ 1

2
;˙ 1

2
/ with even

numbers of positive signs; they are in the 8s representation of SO.8/. In this notation, the fourth
component of v6 is zero.
18The E8 root lattice is given by the set of states P D fn1; n2; � � � ; n8g; fn1C 1

2
; n2C 1

2
; � � � ; n8C 1

2
g

satisfying ni 2 Z;
P8

iD1 ni D 2Z.
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SO(4)

0 πR

G2 SU3

Fig. 20.4 G2˚SU.3/˚SO.4/ lattice with Z2 fixed points. The T3 twisted sector states sit at these
fixed points. The fixed point at the origin and the symmetric linear combination of the red (grey)
fixed points in the G2 torus have � D 1

SO(4)G2 SU3

Fig. 20.5 G2 ˚ SU.3/ ˚ SO.4/ lattice with Z3 fixed points for the T2 twisted sector. The fixed
point at the origin and the symmetric linear combination of the red (grey) fixed points in the G2
torus have � D 1

SO(4)G2 SU3

e6

e5

Fig. 20.6 G2 ˚ SU.3/ ˚ SO.4/ lattice with Z6 fixed points. The T1 twisted sector states sit at
these fixed points

[398, 399, 401, 420, 423–425],

M2
R

4
D Nk

R C 1

2
jr C kvj2 � akR D 0 ; (20.147)

M2
L

4
D Nk

L C 1

2
jP C kXj2 � akL D 0 ; (20.148)

where Nk
R and Nk

L are (fractional) numbers of the right- and left-moving (bosonic)
oscillators, X D V C n3W3 C n2W2 C n0

2W
0
2, and akR, akL are the normal ordering

constants,

akR D 1

2
� 1

2

3X
iD1

jckvij


1 � jckvij

�
;

akL D 1 � 1

2

3X
iD1

jckvij


1 � jckvij

�
; (20.149)

with ckvi D mod.kvi; 1/.
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These states are subject to a generalized Gliozzi-Scherk-Olive (GSO) projection
P D 1

6

P5
`D0 �` [401, 420, 423–425]. For the simple case of the k-th twisted sector

(k D 0 for the untwisted sectors) with no Wilson lines (n3 D n2 D n0
2 D 0) we have

� D �� exp

�
i�

�
.2P C kX/ � X � .2r C kv/ � v

�	
; (20.150)

where � are phases from bosonic oscillators. However, in the Z6 model, the GSO
projector must be modified for the untwisted-sector and T2;4, T3 twisted-sector states
in the presence of Wilson lines [383]. The Wilson lines split each twisted sector
into sub-sectors and there must be additional projections with respect to these sub-
sectors. This modification in the projector gives the following projection conditions,

P � V � ri � v D Z .i D 1; 2; 3/; P � W3; P � W2; P � W0
2 D Z; (20.151)

for the untwisted-sector states, and

T2;4 W P � W2; P � W0
2 D Z ; T3 W P � W3 D Z ; (20.152)

for the T2;3;4 sector states (since twists of these sectors have fixed torii). There is no
additional condition for the T1 sector states.

20.3 Heterotic String Construction of Effective Orbifold
GUTs

We construct a three-familyZ6 orbifold model with two Wilson lines. The details are
given in Sect. 20.5. We have obtained the complete spectra of massless states (plus
KK excitations for these models in certain limits). As we now show, this model is
the string equivalent to the orbifold GUT in Chap. 16.

There are three Kähler class moduli (T1;2;3), whose real parts parameterize
the sizes of the three tori, and one complex structure modulus (U3), which
parameterizes the shape of the third torus. Explicitly, ReT3 D 2RR0 sin �, and
U3 D R

R0
ei� , where R;R0 are the lengths of the two axes of the SO4-lattice and

� their relative angle. These moduli are arbitrary parameters. One may make the
length of one axis (along which one puts the degree-2 Wilson line, W2), say R, large
compared to the string length scale while keeping all other dimensions small. In this
limit (for length scales larger than the string scale but smaller than the radius R),
the low energy theory is effectively five dimensional.19 The SO4 lattice, on which

19It should be obvious that our construction can be generalized to 6D models, simply by taking
both R and R0 large compared to the string length scale. These models are related to 6D orbifold
GUTs compactified on T2=Z2.
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only the Z2 sub-orbifold twist acts, has four fixed points. With only one degree-
2 Wilson line, the fixed points split into two inequivalent classes, labelled by the
winding number n2 D 0; 1. Thus in our setup the fifth dimension is equivalent to the
orbicircle S1=Z2 where each of the two fixed points has a degree-2 degeneracy.

Note that we find it convenient to reinterpret the Z6 model in terms of the
equivalent Z2 � Z3 orbifold (where the Z2 (Z3) sub-orbifold twist acts on the G2

and SO4 (G2 and SU3) sub-lattices). This point of view is more useful for our
comparisons with the orbifold GUT in Chap. 16. Labelling a twisted sector in the
Z6 model by Tk where k D 1; 2; � � � ; 5 and in the Z2 � Z3 model by T.k;l/ where
k D 0; 1 and l D 0; 1; 2, then the correspondence between the twisted sectors in the
Z6 and Z2 � Z3 orbifolds is the following:

Z6 orbifold T1 T2 T3 T4 T5
Z2 � Z3 orbifold T.1;2/ T.0;1/ T.1;0/ T.0;2/ T.1;1/

: (20.153)

The T2;4 sectors, which will shortly be identified with the bulk states in the language
of orbifold GUTs, have k D 0; l D 1; 2; therefore they are untwisted by the Z2
twist.

20.4 PS Model from the Z6 Orbifold Compactification

We now examine the model defined by the shift vector V6 and Wilson lines W3; W2

given in Sect. 20.5. Consider first the model with only the Z3 sub-orbifolding being
imposed (i.e., with twist vector v3 D 2v6, gauge twist V3 D 2V6 and a degree-
3 Wilson line W3, where v6, V6 and W3 are given in Eqs. (20.146), (20.170)
and (20.171)), we find a 6D N D 2 model with observable-sector gauge group E6
(modulo abelian factors). Matter fields of the observable sector consist of effective
4D N D 2 hypermultiplets20 in the following representations (see Fig. 20.7),

U sectors W 27 C 27; T sectors W 3 � .27 C 27/ : (20.154)

The remainingZ2 twist acts as a space reversal on the third compactified complex
dimension, Z3 ! �Z3. The Z3 models have two gravitini with the SO8 momentum
vectors, r D 1

2
.1; 1; 1; 1/ and 1

2
.1;�1;�1; 1/, in the Ramond sector of the right-

moving superstring. Only one of them, r D 1
2
.1; 1; 1; 1/, satisfies the Z2 projection,

r � v2 D Z. Hence the N D 2 supersymmetry is broken to that of N D 1 in 4D.
Gauge symmetry breaking induced by the Z2 orbifolding is as follows. The twist

vector v2 is embedded in the gauge degrees of freedom in two different ways,
with gauge twists V2 and V0

2 D V2 C W2 where V2 D 3V6 and W2 is given in
Eq. (20.171). E6 generators in the Cartan-Weyl basis are transformed under the Z2

20In terms of 4D N D 1 chiral superfields.
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Fig. 20.7 G2 ˚ SU3 ˚ SO4 lattice with Z3 fixed points. The fields V; ˙; and 27.2 U1/C 27.2
U2/ are bulk states from the untwisted sectors. On the other hand, 3� .27 C 27/ are “bulk” states
located on the T.0;1/=T.0;2/ twisted sector (G2, SU3) fixed points. Reprinted from Nuclear Physics
B 704, T. Kobayashi, S. Raby and R.J. Zhang, “Searching for realistic 4d string models with a
Pati–Salam symmetry. Orbifold grand unified theories from heterotic string compactification on a
Z6 orbifold,” Page 15, Copyright (2005), with permission from Elsevier

action as EP ! e2� iP�V2EP and EP ! e2� iP�V0

2EP, thus the linearly-realized gauge
groups consist of roots satisfying P � V2 and P � V0

2 D Z respectively. The pattern of
symmetry breaking in the observable sector can be summarized as follows:

E6

SO10

SU6 ×SU2R

PS
�

�
��

�
�

��

(20.155)

At the final step we have the complete Z6 model with two discrete Wilson lines
being imposed simultaneously; this gives the PS symmetry group in the 4D effective
theory.

In these two inequivalent implementations of the Z2 twist the non-trivial matter
fields of SO10 and SU6 � SU2R are:

Sectors SO10 SU6 � SU2R

U1 16 .15; 1/
U2 10 .6; 2/
U3 16 C 16 .20; 2/
T.0;1/ 2 � 16C C 10� 2.6; 2/C C .15; 1/�
T.0;2/ 16� C 2 � 10C .6; 2/� C 2.15; 1/C

(20.156)

where the subscripts ˙ represent intrinsic parities (details can be found in [383]) ,

p D �� : (20.157)
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p depends on the twist eigenvalue, � , and the oscillator phase, �. Note that p D C
for gauge and untwisted-sector states, and p D C and � have multiplicities 2 and 1
respectively for non-oscillator T.01/=T.02/ states.

Massless states in the untwisted and T.0;1/; T.0;2/ twisted sectors of the model
are the intersections of those of the SO10 and SU6 � SU2R models. This can be
seen from the group branching rules. For example, the T.0;1/-sector matter has the
following branchings,

SO10 ! SU4C ˝ SU2L ˝ SU2R

16C D .4; 2; 1/C C .4; 1; 2/C ;

10� D .6; 1; 1/� C .1; 2; 2/� ; (20.158)

SU6 � SU2R ! SU4C ˝ SU2L ˝ SU2R

.6; 2/C D .4; 1; 2/C C .1; 2; 2/C ;

.15; 1/� D .4; 2; 1/� C .6; 1; 1/� C .1; 1; 1/� : (20.159)

The states in common,

2.4; 1; 2/C C .6; 1; 1/�; (20.160)

agree with that of the T2-twisted sector in Eq. (20.173).
Massless fields in the other, i.e. T.1;2/.D T1/ and T.1;0/.D T3/, twisted sectors are

the unions of those of the SO10 and SU6 � SU2R models (see Figs. 20.8 and 20.9).
Therefore there are two sets of states, furnishing complete representations of SO10

and SU6 � SU2R respectively. For example, the T1 sector of the model contains

.4; 2; 1/C .4; 1; 2/ and .4; 1; 1/C .1; 2; 1/; (20.161)

which are in the complete representations 16 of SO10 and .6; 1/ of SU6 � SU2R.
These two sets of states have quantum numbers n2 D 0 and n2 D 1. (These quantum
numbers are the winding numbers along the direction where the W2 Wilson line is

Fig. 20.8 G2 ˚ SU3 ˚ SO4 lattice with Z6 fixed points. The T.1;1/=T.1;2/ twisted sector states sit at
these fixed points. Reprinted from Nuclear Physics B 704, T. Kobayashi, S. Raby and R.J. Zhang,
“Searching for realistic 4d string models with a Pati–Salam symmetry. Orbifold grand unified
theories from heterotic string compactification on a Z6 orbifold,” Page 16, Copyright (2005), with
permission from Elsevier
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Fig. 20.9 G2 ˚ SU3 ˚ SO4 lattice with Z2 fixed points. The T.1;0/ twisted sector states sit at
these fixed points. Reprinted from Nuclear Physics B 704, T. Kobayashi, S. Raby and R.J. Zhang,
“Searching for realistic 4d string models with a Pati–Salam symmetry. Orbifold grand unified
theories from heterotic string compactification on a Z6 orbifold,” Page 16, Copyright (2005), with
permission from Elsevier

imposed.) The n2 D 0 and n2 D 1 fixed points are thus the SO10 and SU6 � SU2R

branes in the orbifold GUT language.

Identifying Orbifold Parities in String Theory

To a certain degree, the above E6 heterotic model gives a string theoretical realiza-
tion of the orbifold GUT in Chap. 16. Better yet, we also achieve an understanding
of the orbifold parities in terms of string theoretical quantities. Specifically, the
analogue of orbifold parities, Eq. (16.1), in our Z6 string models can be defined
as follows

P D pe2� i.P�V2�r�v2/ ; P0 D pe2� i.P�V0

2�r�v2/ ; (20.162)

where V2 and V0
2 are the two inequivalent gauge embeddings of the Z2 twist in

Sect. 20.4, and p is the intrinsic parity.
These parities can be deduced from the generalized Gliozzi-Scherk-Olive (GSO)

projector [423, 431], as in the paragraphs after Eq. (20.150). Since the terms in the
exponents, P � V2 � r � v2 and P � V0

2 � r � v2, take integral or half-integral values, P
and P0 are either C or �. The orbifold translation corresponds to the difference in
P and P0, i.e. T D e2� iP�W2 . The P, P0 and T in string models have exactly the same
properties as that of the orbifold GUTs.

Evidently, in the E6 orbifold GUT model of Chap. 16, states supported at the
SO10 and SU6 � SU2R branes are those with parities P D C and P0 D C, and states
in the 4D effective theory are those with parities P D P0 D C; this agrees with the
string theoretical interpretation, since the parities in Eq. (20.162) are nothing but the
required GSO projections for the gauge, untwisted and T.01/=T.02/ sector states (i.e.
the bulk states) in string models. From information gathered in Sects. 20.4 and 20.5,
we can also deduce the P and P0 parities for the various bulk matter states. They are
listed in Table 20.1. Note, KK masses for these bulk states can also be derived in
string models as we will discuss in the next section.
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Table 20.1 Parities for the bulk states in the model, computed from Eq. (20.162)

Multiplicities States P P0 States P P0

1 V.15; 1; 1/ C C ˙.15; 1; 1/ � �
1 V.1; 3; 1/ C C ˙.1; 3; 1/ � �
1 V.1; 1; 3/ C C ˙.1; 1; 3/ � �
1 V.6; 2; 2/ C � ˙.6; 2; 2/ � C
1 V.4; 2; 1/ � C ˙.4; 2; 1/ C �
1 V.4; 1; 2/ � � ˙.4; 1; 2/ C C
1 V.4; 2; 1/ � C ˙.4; 2; 1/ C �
1 V.4; 1; 2/ � � ˙.4; 1; 2/ C C
1 27.4; 2; 1/ C C 27.4; 2; 1/ � �
1 27.4; 1; 2/ C � 27.4; 1; 2/ � C
1 27.6; 1; 1/ � C 27.6; 1; 1/ C �
1 27.1; 2; 2/ � � 27.1; 2; 2/ C C
2 27.4; 2; 1/C C � 27.4; 2; 1/C � C
2 27.4; 1; 2/C C C 27.4; 1; 2/C � �
2 27.6; 1; 1/C � � 27.6; 1; 1/C C C
2 27.1; 2; 2/C � C 27.1; 2; 2/C C �
1 27.4; 2; 1/� � C 27.4; 2; 1/� C �
1 27.4; 1; 2/� � � 27.4; 1; 2/� C C
1 27.6; 1; 1/� C C 27.6; 1; 1/� � �
1 27.1; 2; 2/� C � 27.1; 2; 2/� � C

The states have been decomposed to the PS irreducible representations. Reprinted from Nuclear
Physics B 704, T. Kobayashi, S. Raby and R.J. Zhang, “Searching for realistic 4d string models
with a Pati–Salam symmetry. Orbifold grand unified theories from heterotic string compactification
on a Z6 orbifold,” Page 15, Copyright (2005), with permission from Elsevier

As seen in Sect. 20.4, matter states in the T.1;1/=T.1;2/ and T.1;0/ twisted sectors,
which may be identified with the first two families, are localized on the two
inequivalent fixed points in the SO4 lattice. They are the SO10 and SU6 � SU2R

brane states (see Figs. 20.8 and 20.9). These twisted-sector states are more tightly
constrained than their orbifold GUT counterparts. In orbifold GUT models the
only consistency requirement is the chiral anomaly cancellation, thus one can add
arbitrary numbers of vector-like representations to the branes. String models have to
satisfy more stringent modular invariance conditions (of course, one-loop modular
invariance guarantees the model is anomaly free, up to a possible anomalous
abelian factor [432–434]), which also constrains any additional matter in vector-
like representations.
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Summary: An Orbifold GUT—Heterotic String Dictionary

We first implement the Z3 sub-orbifold twist, which acts only on the G2 and SU.3/
lattices. The resulting model is a 6D gauge theory with N D 2 hypermultiplet
matter, from the untwisted and T2;4 twisted sectors. This 6D theory is our starting
point to reproduce the orbifold GUT models. The next step is to implement the Z2
sub-orbifold twist. The geometry of the extra dimensions closely resembles that of
6D orbifold GUTs. The SO.4/ lattice has four Z2 fixed points at 0, �R, �R0 and
�.R C R0/, where R and R0 are on the e5 and e6 axes, respectively, of the lattice (see
Figs. 20.4 and 20.6). When one varies the modulus parameter of the SO.4/ lattice
such that the length of one axis (R) is much larger than the other (R0) and the string
length scale (`s), the lattice effectively becomes the S1=Z2 orbi-circle in the 5D
orbifold GUT, and the two fixed points at 0 and �R have degree-2 degeneracies.
Furthermore, one may identify the states in the intermediate Z3 model, i.e. those of
the untwisted and T2;4 twisted sectors, as bulk states in the orbifold GUT.

Space-time supersymmetry and GUT breaking in string models work exactly as
in the orbifold GUT models. First consider supersymmetry breaking. In the field
theory, there are two gravitini in 4D, coming from the 5D (or 6D) gravitino. Only
one linear combination is consistent with the space reversal, y ! �y; this breaks
the N D 2 supersymmetry to that of N D 1. In string theory, the space-time
supersymmetry currents are represented by those half-integral SO.8/ momenta.21

The Z3 and Z2 projections remove all but two of them, r D ˙ 1
2
.1; 1; 1; 1/; this

gives N D 1 supersymmetry in 4D.
Now consider GUT symmetry breaking. As usual, the Z2 orbifold twist and the

translational symmetry of the SO.4/ lattice are realized in the gauge degrees of
freedom by degree-2 gauge twists and Wilson lines respectively. To mimic the 5D
orbifold GUT example, we impose only one degree-2 Wilson line, W2, along the
long direction of the SO.4/ lattice, R.22 The gauge embeddings generally break
the 5D/6D (bulk) gauge group further down to its subgroups, and the symmetry
breaking works exactly as in the orbifold GUT models. This can clearly be seen
from the following string theoretical realizations of the orbifold parities

P D p e2� i ŒP�V2�r�v2� ; P0 D p e2� i ŒP�.V2CW2/�r�v2� ; (20.163)

21Together with r4 D .0; 0; 0; 1/, they form the set of positive weights of the 8v representation of
the SO.8/, the little group in 10d. ˙r4 represent the two uncompactified dimensions in the light-
cone gauge. Their space-time fermionic partners have weights r D .˙ 1

2
;˙ 1

2
;˙ 1

2
;˙ 1

2
/ with even

numbers of positive signs; they are in the 8s representation of SO.8/. In this notation, the fourth
component of v6 is zero.
22Wilson lines can be used to reduce the number of chiral families. In all our models, we find it is
sufficient to get three-generation models with two Wilson lines, one of degree 2 and one of degree
3. Note, however, that with two Wilson lines in the SO.4/ torus we can break SO.10/ directly to
SU.3/ � SU.2/ � U.1/Y � U.1/X (see for example, [319, 435]).
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where V2 D 3V6, and p D �� can be identified with intrinsic parities in the field
theory language.23 Since 2.P �V2�r �v2/; 2P �W2 D Z, by properties of the E8�E8
and SO.8/ lattices, thus P2 D P02 D 1, and Eq. (20.163) provides a representation of
the orbifold parities. From the string theory point of view, P D P0 D C are nothing
but the projection conditions,� D 1, for the untwisted and T2;4 twisted-sector states
[see Eqs. (20.150)–(20.152)].

To reaffirm this identification, we compare the masses of KK excitations derived
from string theory with that of orbifold GUTs. The coordinates of the SO.4/ lattice
are untwisted under the Z3 action, so their mode expansions are the same as that
of toroidal coordinates. Concentrating on the R direction, the bosonic coordinate is
XL;R D xL;R C pL;R.	 ˙ �/C oscillator terms, with pL, pR given by

pL D m

2R
C
�
1 � 1

4
jW2j2

�
n2R

`2s
C P � W2

2R
;

pR D pL � 2n2R

`2s
; (20.164)

where m (n2) are KK levels (winding numbers). The Z2 action maps m to �m,
n2 to �n2 and W2 to �W2, so physical states must contain linear combinations,
jm; n2i ˙ j � m;�n2i; the eigenvalues ˙1 correspond to the first Z2 parity, P, of
orbifold GUT models. The second orbifold parity, P0, induces a non-trivial degree-2
Wilson line; it shifts the KK level by m ! m C P � W2. Since 2W2 is a vector of
the (integral) E8 �E8 lattice, the shift must be an integer or half-integer. When R 
R0 � `s, the winding modes and the KK modes in the smaller dimension of SO.4/
decouple. Equation (20.164) then gives four types of KK excitations, reproducing
the field theoretical mass formula in Eq. (14.57).

20.4.1 D4 Family Symmetry

This general class of models has a D4 family symmetry which constrains the
possible Yukawa matrices for quarks and leptons. The third family is a bulk field,
while the first two families are located on the two Z2 fixed points in the SO4 torus
with an SO10 gauge symmetry. One family sits at each fixed point (see Fig. 20.9).
Since the Wilson line in the SO4 torus lies in the orthogonal direction to these
two fixed points, the theory is invariant under the permutation of the first two
families, labeled by an index n0

2 D 0; 1. In addition, the string selection rule requires
that an effective superpotential given in terms of the fields associated with the
twisted sector states at n0

2 include an even number of fields at each fixed point
with n0

2 D 0; 1. Hence these effective superpotential terms are invariant under a

23For gauge and untwisted-sector states, p are trivial. For non-oscillator states in the T2;4 twisted
sectors, p D � are the eigenvalues of the G2-plane fixed points under the Z2 twist. Note that
p D C and � states have multiplicities 2 and 1 respectively since the corresponding numbers of
fixed points in the G2 plane are 2 and 1.
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Z2 parity fn0

2
! �fn0

2
. The two operations are generated by the two Pauli matrices

�1 D
�
0 1

1 0

�
and �3 D

�
1 0

0 �1
�

acting on a real two dimensional vector. The

complete set of operations closes on the discrete non-abelian family symmetry
group D4 D f˙I; ˙�1; ˙�3; �i�2g.24 Note that the eight-element finite (dihedral)
group D4 is the symmetry group of a square. It has five conjugacy classes and five
faithful representations. The character table is

Classes I �I ˙�1 ˙�3 �i�2
Doublet � D 2 �2 0 0 0

Singlet � A1 1 1 1 1 1

Singlet � B1 1 1 1 �1 �1
Singlet � B2 1 1 �1 1 �1
Singlet � A2 1 1 �1 �1 1

:

(20.165)

In our models, the first two families transform as the doublet, while the third family
and Higgs doublets transform as the trivial singlet.

We have many SO10 singlets in our models, transforming as doublets under D4.
They appear in effective higher dimension fermion mass operators [Eq. (20.168)].
Consider, for example, two doublets under D4 given by {SA; QSA}. Then in
terms of these two doublets we can define bilinear combinations transforming as
{A1; A2; B1; B2}. We have

S1 QS1 C S2 QS2 � A1 (20.166)

S1 QS2 � S2 QS1 � A2

S1 QS2 C S2 QS1 � B1

S1 QS1 � S2 QS2 � B2

The effective Yukawa couplings are then constructed in terms of D4 invariants.
Define the D4 doublet left-handed quarks and leptons (4,2,1) [D QA] and left-
handed anti-quarks and anti-leptons .N4; 1; 2/ [D NQA] for the first two families and
the Higgs multiplet (1,2,2) [D H ]. We then have the PS and D4 invariants:

H A1 .Q1
NQ1 C Q2

NQ2/ � H A1 .QA
NQA/

H A2 .Q1
NQ2 � Q2

NQ1/ (20.167)

H B1 .Q1
NQ2 C Q2

NQ1/

H B2 .Q1
NQ1 � Q2

NQ2/

24D4 is a non-abelian subgroup of SU.2/. It is also equivalent to a subgroup of O.2/.
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We can also have operators of the form

(20.168)

H .QA SA/. NQB SB/ D H ŒQ1
NQ1 S21 C Q2

NQ2 S22 C .Q1
NQ2 C Q2

NQ1/ S1 S2�

Unfortunately there are, in principle, several possible ways of constructing D4
invariants. We are not able to determine, without further string calculations, how
to contract the D4 indices. In [436] we studied flavor violation in the quark sector
assuming this D4 family symmetry. We found that the family symmetry can safely
protect the theory against too large flavor violation.

Consistent with the D4 family symmetry and the effective 5D orbifold GUT, we
have a universal Yukawa coupling for the third family. It is given by the effective
Lagrangian term

L3 D g5p
�R

Z �R

0

dy 27 ˙ 27 D g NQ H Q: (20.169)

20.5 Details of the Three-Family Pati-Salam Model

In this section we define the three-family PS model in the Z6 orbifold with v6 D
1
6
.1; 2;�3/. The Z6 is equivalent to the Z2�Z3 orbifold, where the two twist vectors

are v2 D 3v6 D 1
2
.1; 0;�1/ and v3 D 2v6 D 1

3
.1;�1; 0/.

There are in total 61 inequivalent modular invariant choices for the gauge twists
in the Z6 orbifold model [425, 426]. To narrow down the possibilities, we demand
the models we start with (before imposing any Wilson line) contain an SO10 gauge
group and some matter fields in 16=16 representations in the first or third twisted
sectors. Although this step makes our results less generic, it greatly reduces the large
number of possible models to a manageable subset. We choose the following gauge
twist,

V6 D 1

6
.22200000/.11000000/ ; (20.170)

which breaks the E8 � E8 gauge symmetry down to SO10 � SU3 � E7
0. The model

contains four 16 and one 16 in the untwisted sectors, and eighteen 16 and three 16
in the twisted sectors; in total there are eighteen SO10 families [425, 426].

To further break the gauge symmetries and reduce the number of families, we
impose discrete Wilson lines. As previously mentioned, there are at most one
degree-3 Wilson line in the second complex plane, and two degree-2 Wilson lines
in the third. We choose to add two of them, one of degree-2 and one of degree-3, as
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follows,

W2 D 1

2
.10000111/.00000000/ (20.171)

W3 D 1

3
.1 � 1000000/.00200000/ :

One can easily verify our choices satisfy the modular-invariance requirements,
Eq. (20.145) and also the additional constraints given by

f2.W.i/
2 /

2 ; 3.W3/
2 ; 4W.1/

2 � W.2/
2 ; 12W.i/

2 � W3g D 0mod 2: (20.172)

The W3 Wilson line breaks the gauge group in the observable sector to SO10, and
the W2 breaks it further down to the PS gauge group.

The remaining unbroken gauge groups are SU4C ˝SU2L ˝SU2R � SO0
10 � SU0

2�
.U1/

5 where the primed groups are in the hidden sector. The untwisted- and twisted-
sector matter provide the following irreducible representations of the PS gauge
group (modulo some singlets),

U1 W .4; 2; 1/ ; U2 W .1; 2; 2/ ; U3 W .4; 1; 2/C .4; 1; 2/ ; (20.173)

T1 W 2.4; 2; 1/C 2.4; 1; 2/C 4.4; 1; 1/C 4.4; 1; 1/C 8.1; 2; 1/C 8.1; 1; 2/C 2.1; 1; 2I 1; 2/ ;
T2 W 2.4; 1; 2/C .6; 1; 1/ ; T3 W 6.6; 1; 1/C 6.1; 2; 2/ ; T4 W .4; 1; 2/C 2.6; 1; 1/ ;

This model is an example of an E6 orbifold GUT embedded into the heterotic string.
In addition, it is an example of a model with a local SO.10/ GUT located in the T1

twisted sector at the two fixed points located at the origin of the G2 and SU.3/ tori
and on two fixed points on the SO.4/ torus (see Fig. 20.8). Moreover at the two
SO.10/ fixed points there are two complete families of quarks and leptons in the
spinor representation of SO.10/.25

The complete massless matter spectrum for this model is given in Table 20.2.
The model has many additional vector-like exotic states and additional U.1/ gauge
groups, a large hidden sector non-abelian gauge group with hidden matter. Many of
the SM singlet fields are moduli which can obtain VEVs without breaking the gauge
symmetry. These VEVs can also give mass to the vector-like exotics, the extra U.1/
gauge bosons and generate non-trivial Yukawa couplings for quarks and leptons.
A detailed study of the phenomenology of this model has not been performed. It
is known that the model has the necessary states to spontaneously break PS to the
SM. However, it is also known that in the process R-parity violating dimension 4
operators are generated. This is a major problem of the model. In the next chapter
we discuss a class of MSSM models which have an exact R-parity.

25See problem 13.
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Chapter 21
MSSM from the Heterotic String Compactified
on T6=Z6

This chapter is based on the work in [405–408, 437]. In this section we discuss
just one “benchmark” model (Model 1) obtained via a “mini-landscape” search
[405] of the E8 � E8 heterotic string compactified on the Z6 orbifold [406].1 The
geometry of the model is the same as in the previous chapter. The difference
is in the shift vector and Wilson lines. Moreover the goal is different. Here
we look for an effective orbifold GUT which reduces to the Standard Model
in 4D. The results of the search are quite remarkable. The benchmark model
has many features consistent with a realistic MSSM. In particular, we show
that all vector-like exotics and additional U.1/ gauge bosons can be lifted to
high energy along F and D-flat directions. The model has an exact R parity
which distinguishes Higgs doublets from lepton doublets and prevents dimen-
sion 4 baryon and lepton number violating operators. Right-handed neutrinos
obtain large Majorana masses consistent with the standard See-Saw mechanism.
Yukawa matrices, depending on the values of moduli VEVs, are hierarchical
(but not physical) and there is a D4 family symmetry. Finally the top quark
Yukawa coupling is set by the GUT gauge coupling which is consistent with
data.

1For earlier work on MSSM models from Z6 orbifolds of the heterotic string, see [413, 414]. Note,
other MSSM-like Heterotic orbifold models have been obtained in the literature. For example, see
[438].
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21.1 MSSM with R Parity

The model is defined by the shifts and Wilson lines
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: (21.1)

A possible second order 2 Wilson line is set to zero.
The shift V is defined to satisfy two criteria.

• The first criterion is the existence of a local SO.10/ GUT 2 at the T1 fixed points
at x6 D 0 in the SO.4/ torus (Fig. 20.6).

P � V D ZI P 2 SO.10/ momentum lattice: (21.2)

Since the T1 twisted sector has no invariant torus and only one Wilson line along
the x6 direction, all states located at these two fixed points must come in complete
SO.10/ multiplets.

• The second criterion is that two massless spinor representations of SO.10/ are
located at the x6 D 0 fixed points.

Hence, the two complete families on the local SO.10/ GUT fixed points
gives us an excellent starting point to find the MSSM. The Higgs dou-
blets and third family of quarks and leptons must then come from else-
where.

Let us now discuss the effective 5D orbifold GUT [439]. Consider the orbifold
.T2/3=Z3 plus the Wilson line W3 in the SU3 torus. The Z3 twist does not act
on the SO4 torus, see Fig. 20.5. As a consequence of embedding the Z3 twist
as a shift in the E8 � E8 group lattice and taking into account the W3 Wilson
line, the first E8 is broken to SU.6/. This gives the effective 5D orbifold gauge
multiplet contained in the N D 1 vector field V . In addition we find the massless
states

˙ 2 35; 20 C 20c and 18.6 C N6/ (21.3)

2For more discussion on local GUTs, see [412, 413].
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in the 6D untwisted sector and T2; T4 twisted sectors. Together these form a
complete N D 2 gauge multiplet

.V C˙/ and 20 C 18.6/ (21.4)

dimensional hypermultiplets. In fact the massless states in this sector can all be
viewed as “bulk” states moving around in a large 5D space-time.

Now consider the Z2 twist and the Wilson line W2 along the x6 axis in
the SO4 torus. The action of the Z2 twist breaks the gauge group to SU.5/,
while W2 breaks SU.5/ further to the SM gauge group SU.3/C � SU.2/L �
U.1/Y .

Let us now consider those MSSM states located in the bulk. From
two of the pairs of N D 1 chiral multiplets 6 C 6c, which decompose
as

2 � .6 C 6c/ (21.5)

�
h
.1; 2/��

1;1 C .3; 1/�C
�2=3;1=3

i

C
h
.1; 2/CC

�1;�1 C .3; 1/��
2=3;�1=3

i

C
h
.1; 2/�C

1;1 C .3; 1/���2=3;1=3
i

C
h
.1; 2/C�

�1;�1 C .3; 1/CC
2=3;�1=3

i
;

we obtain the third family Nb and lepton doublet, l. The rest of the third family comes
from the 10 C 10c of SU.5/ contained in the 20 C 20c of SU.6/, in the untwisted
sector.

Now consider the Higgs bosons. The bulk gauge symmetry is SU.6/. Under
SU.5/� U.1/, the adjoint decomposes as

35 ! 240 C 5C1 C 5c�1 C 10: (21.6)

Thus the MSSM Higgs sector emerges from the breaking of the SU.6/ adjoint
by the orbifold and the model satisfies the property of “gauge-Higgs unifica-
tion.”

In the models with gauge-Higgs unification, the Higgs multiplets come from
the 5D vector multiplet (V; ˙), both in the adjoint representation of SU.6/.
V is the 4D gauge multiplet and the 4D chiral multiplet ˙ contains the
Higgs doublets. These states transform as follows under the orbifold parities
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.P P0/:

V W

0
BBBBBBB@

.CC/ .CC/ .CC/ .C�/ .C�/ .�C/

.CC/ .CC/ .CC/ .C�/ .C�/ .�C/
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.�C/ .�C/ .�C/ .��/ .��/ .CC/

.C�/ .C�/ .C�/ .CC/ .CC/ .��/

1
CCCCCCCA
: (21.8)

Hence, we have obtained doublet-triplet splitting via orbifolding.

21.2 D4 Family Symmetry

The MSSM string model has a D4 family symmetry with the first and second family
transforming as a doublet and the third family and Higgs doublets transforming as
D4 singlets. We have:

• Since the top quarks and the Higgs are derived from the SU.6/ chiral adjoint and
20 hypermultiplet in the 5D bulk, they have a tree level Yukawa interaction given
by

W � g5p
�R

Z �R

0

dy 20c ˙ 20 D gG Q3 Hu U
c
3 (21.9)

where g5 (gG) is the 5D (4D) SU.6/ gauge coupling constant evaluated at the
string scale. Further analysis on the top quark Yukawa coupling was done in
[440] which analyzed corrections to the simple tree level result.

• The first two families reside at the Z2 fixed points, resulting in a D4 family
symmetry. Hence family symmetry breaking may be used to generate a hierarchy
of fermion masses.3

3For a discussion of D4 family symmetry and phenomenology, see [436]. For a general discussion
of discrete non-Abelian family symmetries from orbifold compactifications of the heterotic string,
see [384].
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21.3 More Details of “Benchmark” Model 1 [406]

Let us now consider the spectrum, exotics, R parity, Yukawa couplings, and neutrino
masses. In Table 21.1 we list the states of the model. In addition to the three families
of quarks and leptons and one pair of Higgs doublets, we have vector-like exotics
(states which can obtain mass without breaking any SM symmetry) and SM singlets.
The SM singlets enter the superpotential in several important ways. They can give
mass to the vector-like exotics via effective mass terms of the form

EEc QSn (21.10)

where E;Ec ( QS) represent the vector-like exotics and SM singlets respectively. We
have checked that all vector-like exotics obtain mass at supersymmetric points in
moduli space with F D D D 0. The SM singlets also generate effective Yukawa
matrices for quarks and leptons, including neutrinos. In addition, the SM singlets
give Majorana mass to the 16 right-handed neutrinos nci , 13 conjugate neutrinos ni
and Dirac mass mixing the two. We have checked that the theory has only three light
left-handed neutrinos.

However, one of the most important constraints in this construction is the
existence of an exact low energy R parity. In this model we identified a generalized
B-L (see Table 21.1) which is standard for the SM states and vector-like on the
vector-like exotics. This B�L naturally distinguishes the Higgs and lepton doublets.

Table 21.1 Spectrum. The quantum numbers under SU.3/�SU.2/� ŒSU.4/�SU.2/0� are shown
in boldface; hypercharge and B�L charge appear as subscripts

# irrep Label # irrep Label

3 .3; 2I 1; 1/.1=3;1=3/ qi 3
�
3; 1I 1; 1


.�4=3;�1=3/

Nui
3 .1; 1I 1; 1/.2;1/ Nei 8 .1; 2I 1; 1/.0;�/ mi

4
�
3; 1I 1; 1


.2=3;�1=3/

Ndi 1 .3; 1I 1; 1/.�2=3;1=3/
Ndci

4 .1; 2I 1; 1/.�1;�1/ `i 1 .1; 2I 1; 1/.1;1/ `ci
1 .1; 2I 1; 1/.�1;0/ �i 1 .1; 2I 1; 1/.1;0/ �c

i

6
�
3; 1I 1; 1


.2=3;2=3/

ıci 6 .3; 1I 1; 1/.�2=3;�2=3/ ıi

14 .1; 1I 1; 1/.1;�/ sC

i 14 .1; 1I 1; 1/.�1;�/ s�

i

16 .1; 1I 1; 1/.0;1/ Nni 13 .1; 1I 1; 1/.0;�1/ ni
5 .1; 1I 1; 2/.0;1/ �ci 5 .1; 1I 1; 2/.0;�1/ �i

10 .1; 1I 1; 2/.0;0/ hi 2 .1; 2I 1; 2/.0;0/ yi
6 .1; 1I 4; 1/.0;�/ fi 6

�
1; 1I 4; 1


.0;�/

NQi

2 .1; 1I 4; 1/.�1;�1/ f�

i 2
�
1; 1I 4; 1


.1;1/

NQC

i

4 .1; 1I 1; 1/.0;˙2/ �i 32 .1; 1I 1; 1/.0;0/ s0i
2

�
3; 1I 1; 1


.�1=3;2=3/

�ci 2 .3; 1I 1; 1/.1=3;�2=3/ �i

Note that the states s˙

i , fi, Nfi and mi have different B � L charges for different i, which we do not
explicitly list [406]
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Moreover we found SM singlet states

QS D fhi; �i; s0i g (21.11)

which can get vacuum expectation values preserving a matter parity ZM
2 subgroup

of U.1/B�L. It is this set of SM singlets which give vector-like exotics mass and
effective Yukawa matrices for quarks and leptons. In addition, the states �i give
Majorana mass to neutrinos.

As a final note, we have evaluated the � term in this model. As a consequence of
gauge-Higgs unification, the product HuHd is a singlet under all U.1/s. Moreover, it
is also invariant under all string selection rules, i.e. H-momentum and space-group
selection constraints. As a result the � term is of the form

� Hu Hd D W0. QS/ Hu Hd (21.12)

where the factor W0. QS/.D �/ is a polynomial in SM singlets and includes all terms
which can also appear in the superpotential for the SM singlet fields, eW0. QS/. Thus
when we demand a flat space supersymmetric limit, we are also forced to � �
W0. QS/ D eW0

QS D 04, i.e. � vanishes in the flat space supersymmetric limit. This is
encouraging, since when SUSY is broken we expect both terms to be non-vanishing
and of order the weak scale.

21.4 Summary

At this point it might be worthwhile to summarize the progress in string construc-
tions of theories which look like the real world. So far we have models which contain
the correct gauge groups and matter representations. This is a great success. This
success requires embedding orbifold GUTs into the heterotic string with matter
in complete GUT representations sitting a local GUT fixed points. The models
include a family symmetry which constrains the fermion mass hierarchy as well as
flavor violating interactions. They also allow for Majorana masses for right-handed
neutrinos, and thus the standard See-Saw mechanism. In addition, the models have
an exact R-parity which forbids dimension 4 baryon and lepton number violating
operators and the lightest SUSY particle is a stable candidate for dark matter.

So what are the remaining problems (and there are many!). So far the models
allow for dimension 5 baryon and lepton number violating operators which are not

4We have not shown that the coefficients of the individual monomials in W0. QS/ are, in general,
identical in both the � term and in the SM singlet superpotential term, eW0

QS. Nevertheless at sixth
order in SM singlet fields we have shown that when one vanishes, so does the other. This is because
each monomial contains a bi-linear in D4 doublets and this family symmetry fixes the relative
coefficient in the product. Therefore when the product of D4 doublets vanishes, we have � D
W0. QS/ D eW0

QS: D 0.
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sufficiently suppressed. Thus rapid proton decay is a problem. We address a solution
to this problem in Chap. 23. In addition, GUT symmetry breaking via Wilson lines is
local. It would be nice to have examples where GUT symmetry breaking was global,
such that the compactification scale is the same as the GUT scale. This concern is
also addressed in Chap. 23.

However, the most serious problems are related to dealing with all the moduli
and breaking supersymmetry. At the present time, all gauge and Yukawa couplings
are functions of moduli VEVs. The moduli lie along flat directions in the potential.
These flat directions are typically only lifted once SUSY is broken. Thus the real fine
tuning problem is how is it possible for all the moduli to obtain the precise values
necessary to generate gauge and Yukawa couplings consistent with low energy data.
And at the same time the cosmological constant needs to be close to zero to one part
in 10120 in Planck units. Moreover, we have assumed from the start that six space
dimensions are compactified. So the question becomes, what is special about six
compact dimensions. A possible answer is given in [441].

Finally, the orbifold models we have discussed contain orbifold fixed points,
which are singular geometries with infinite space-time curvature localized at the
fixed points. There is no problem with these fixed points for the two dimensional
conformal field theory which defines the string. However, in order to obtain a
well-defined supergravity limit, one would like to smooth out the singular points.
This requires, so-called “blowup modes” (massless chiral singlets corresponding
to massless twisted sector states) at the fixed points. In the model presented here,
there are some fixed points which only contain states which are non-singlets under
the Standard Model gauge group. Therefore these fixed points cannot be blown up
without breaking at least hypercharge [442, 443]. This is not a problem for the string
theory per se, but it prevents the realization of a smooth supergravity limit.

In the next chapter, we discuss the issues of gauge coupling unification and
proton decay in the heterotic string models considered here.



Chapter 22
Gauge Coupling Unification and Proton Decay

This chapter is based on the work of [439]. We have checked whether the SM gauge
couplings unify at the string scale in the class of models similar to Model 1 discussed
in the previous chapter. All of the 15 MSSM-like models of [406] have three families
of quarks and leptons and one or more pairs of Higgs doublets. They all admit an
SU.6/ orbifold GUT with gauge-Higgs unification and the third family in the bulk.
They differ, however, in other bulk and brane exotic states. We show that the KK
modes of the model, including only those of the third family and the gauge sector,
are not consistent with gauge coupling unification at the string scale. Nevertheless,
we show that it is possible to obtain unification if one adjusts the spectrum of vector-
like exotics below the compactification scale. As an example, see Fig. 22.1. Note,
the compactification scale is less than the 4D GUT scale and some exotics have
mass two orders of magnitude less than MC , while all others are taken to have
mass at MSTRING. In addition, the value of the GUT coupling at the string scale,
˛G.MSTRING/ � ˛string, satisfies the weakly coupled heterotic string relation

GN D 1

8
˛string ˛

0 (22.1)

or

˛�1
string D 1

8
.

MPl

MSTRING
/2: (22.2)

In Fig. 22.2 we plot the distribution of solutions with different choices of light
exotics. On the same plot we give the proton lifetime due to dimension 6 operators.
Recall in these models the two light families are located on the SU.5/ branes, thus
the proton decay rate is only suppressed by the compactification scale, M�2

C . Note,
90% of the models are already excluded by the Super-Kamiokande bounds on the
proton lifetime. The remaining models may be tested at a next generation megaton
water čerenkov detector or at the Liquid Argon detector proposed for DUNE.

© Springer International Publishing AG 2017
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Fig. 22.1 An example of the type of gauge coupling evolution we see in these models, versus
the typical behavior in the MSSM. The “tail” is due to the power law running of the couplings
when towers of Kaluza-Klein modes are involved. Unification in this model occurs at MSTRING '
5:5 � 1017 GeV, with a compactification scale of MC ' 8:2 � 1015 GeV, and an exotic mass scale
of MEX ' 8:2 � 1013 GeV

Fig. 22.2 Histogram of solutions with MSTRING > MC & MEX, showing the models which are
excluded by Super-K bounds (darker grey) and those which are potentially accessible in a next
generation proton decay experiment (lighter grey). Of 252 total solutions, 48 are not experimentally
ruled out by the current experimental bound, and most of the remaining parameter space can be
eliminated in the next generation of proposed proton decay searches



Chapter 23
String Theory Realization of ZR

4
Symmetry

In Chap. 19 we showed that discrete R symmetries can be used to define the MSSM.
In this chapter we present a globally consistent string compactification with the
exact MSSM spectrum below the compactification scale. The model exhibits the
ZR
4 symmetry, which originates from the Lorentz group of compactified dimensions

[276]. In the discussion of Sect. 19.2 we argued that, if some hidden sector strong
dynamics was responsible for supersymmetry breakdown, also a � term of the
right size will be induced by this dynamics. In order to render our discussion more
specific, we will now discuss an explicit, globally consistent string-derived model.
Such models have the important property that they are complete, i.e. unlike bottom-
up (or ‘local’) models they cannot be ‘amended’ by some extra states or sectors.
This allows us to clarify whether or not a reasonable � term will appear.

Making extensive use of the methods to determine the remnant symmetries
described in [444], we were able to find examples realizing the ZR

4 discussed in
Sect. 19.2, based on the string model derived in [445] and similar models, with the
exact MSSM spectrum, a large top Yukawa coupling, a non-trivial hidden sector etc.
In what follows, we present an explicit example.

General Picture

String theory compactifications provide us with a plethora of vacuum configura-
tions, each of which comes with symmetries and, as a consequence, with extra
massless degrees of freedom whose mass terms are prohibited by these symmetries.
Simple examples for such compactifications include heterotic orbifolds, [398, 399],
where the rank of the gauge group after compactification equals that of E8 �E8, i.e.
16. A few hundreds of orbifold models are known in which E8 � E8 gets broken
to the standard model gauge symmetry GSM D SU.3/C � SU.2/L � U.1/Y (with
hypercharge in GUT normalization) times U.1/n times a hidden sector group and
the chiral spectra of the MSSM [405, 407]. They also exhibit exotics which are

© Springer International Publishing AG 2017
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vector-like with respect to GSM and which can be decoupled when the extra gauge
symmetries are broken. Each of these models contains many vacua, i.e. solutions
of the supersymmetry conditions VF D VD D 0. Typically these vacua exhibit flat
directions before supersymmetry breaking.

At the orbifold point, where the vacuum expectation values (VEVs) of all fields
are zero, we have discrete R as well as continuous and discrete non-R symmetries.
Typically one of the U(1) symmetries appears anomalous, which is conventionally
denoted by U.1/anom. Also some of the discrete symmetries may appear anomalous
[390, 446]. After assigning VEVs to certain fields, some of the symmetries are
spontaneously broken and others remain. We shall be mainly interested in remnant
discrete symmetries, which can be of R or non-R type and be either anomalous or
non-anomalous. We will discuss examples of all kinds in Sect. 23.1.

Clearly, one cannot assign VEVs to the fields at will. Rather, one has to identify
field configurations which correspond to local minima of the (effective) scalar
potential. Let us briefly describe the first steps towards identifying such vacuum
configurations. Consider a configuration in which several fields attain VEVs. We
focus on “maximal vacua” (as in [447]), i.e. we assume that all fields which are
neutral under the remnant gauge and discrete symmetries, called �.i/ .1 � i � N/ in
what follows, attain VEVs (if these are consistent with D-flatness). All fields without
expectation value, denoted by  . j/ .1 � j � M/, therefore transform non-trivially
under some of the remnant symmetries.

Discrete Non-R Symmetries

The case of vacua with non-R discrete symmetries has been discussed in detail in
[414, 447]. In this case, the superpotential has the form

W D ˝.�.1/; : : : �.N//C .terms at least quadratic in the  . j// : (23.1)

Therefore, the F-term equations for the  . j/ fields trivially vanish and we are left
with N F-term equations for the N �.i/ fields, which generically have solutions.
Hence, if all �.i/ enter gauge invariant monomials composed of �.i/ fields only, we
will find supersymmetric vacua, i.e. solutions to the F- and D-term equations.

Because of the above arguments it is sufficient to look at the system of �.i/

fields only, which has been studied in the literature. Consider the case of a generic
superpotential W . It is known that the solutions to the D- and F-term equations
intersect generically in a point [448]. That is, there are point-like field configurations
which satisfy

Da D Fi D 0 at �.i/ D h�.i/i ; (23.2)
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where, as usual,

Da D
X
i

.�.i//� Ta �
.i/ ; (23.3a)

F.i/ D @W

@�.i/
: (23.3b)

The term ‘point-like’ means that there are no massless deformations of the
vacuum (23.2). The reason why these vacua are point-like is easily understood:
generically the F-term equations constitute as many gauge invariant constraints
as there are gauge invariant variables. However, this also means that, at least
generically,

W j�.i/ D h�.i/i ¤ 0 : (23.4)

If the fields attain VEVs h�.i/i of the order of the fundamental scale, one hence
expects to have too large a VEV for W . One possible solution to the problem relies
on approximate R symmetries [371], where one obtains a highly suppressed VEV
of the superpotential. In what follows, we discuss an alternative: in settings with a
residual R symmetry the above conclusion can be avoided as well.

Discrete R Symmetries

Let us now discuss vacua with discrete R symmetries. To be specific, consider the
order four symmetry ZR

4 , under which the superpotential W has charge 2, such that

W
��! � W (23.5)

under the ZR
4 generator �. Superspace coordinates transform as

�˛ ! i �˛ (23.6)

such that the F-term Lagrangian

LF D
Z

d2� W C h.c. (23.7)

is invariant. Chiral superfields will have R charges 0; 1; 2; 3.1 Both the fields of the
type 1 and 3 with R charges 1 and 3, respectively, can acquire mass as the  21 and
 23 terms have R charge 2 mod 4 and thus denote allowed superpotential terms.

1A special role is played by the dilaton S, whose imaginary part a D Im Sj�D0 shifts under ZR
4 .
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The system of fields �.i/0 and  . j/2 with R charges 0 and 2, respectively, is more
interesting. Consider first only one field �0 and one field  2. The structure of the
superpotential is

W D  2 � f .�0/C O. 32 / (23.8)

with some function f . The F-term for �0 vanishes trivially as long as ZR
4 is unbroken,

@W

@�0
D  2 � f 0.�0/ D 0 : (23.9)

Note that due to the ZR
4 symmetry the superpotential vanishes in the vacuum. Thus

it is sufficient to look at the global supersymmetry F-terms. On the other hand, the
F-term constraint (at  2 D 0)

@W

@ 2
D f .�0/

ŠD 0 (23.10)

will in general fix �0 at some non-trivial zero h�0i of f . Indeed, there will be a
supersymmetric mass term, which can be seen by expanding �0 around its VEV, i.e.
inserting �0 D h�0i C ı�0 into (23.8),

W D f 0.h�0i/ ı�0  2 C O.ı�20 ;  
3
2 / : (23.11)

The supersymmetric mass f 0.h�0i/ is generically different from 0.
Repeating this analysis for N �

.i/
0 and M  

. j/
2 fields reveals that the F-terms of

the . j/2 lead to M, in general independent, constraints on the �.i/0 VEVs. For N D M
we therefore expect point-like vacua with all directions fixed in a supersymmetric
way.

To summarize, systems with a residual R symmetry ensure, unlike in the case
without residual symmetries, that hW i D 0. However, in systems which exhibit
a linearly realized ZR

4 somewhere in field space it may not be possible to find a
supersymmetric vacuum that preserves ZR

4 . In the case of a generic superpotential
this happens if there are more, i.e. M > N, fields with R charge 2 than with 0.
On the other hand, if there are more fields with R charge 0 than with 2, i.e. for
M < N, one expects to have a Minkowski vacuum with N � M flat directions. For
N D M one can have supersymmetric Minkowski vacua with all directions fixed in
a supersymmetric way.

An important comment in this context concerns the moduli-dependence of
couplings. As we have seen, in the case of discrete R-symmetries one might obtain
more constraint (i.e. F-term) equations than R-even ‘matter’ fields. Specifically, in
string vacua one should, however, carefully take into account all R-even fields, also
the Kähler and complex structure moduli, Ti and Uj, on whose values the coupling
strengths depend.
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23.1 An Explicit String-Derived Model

In order to render our discussion more specific, we base our analysis on a concrete
model (see [276]). We consider a Z2 � Z2 orbifold compactification with an
additional freely acting Z2 of the E8 � E8 heterotic string. Details of the model
including shift vectors and Wilson lines can be found in Sect. 23.3.

In [445] a vacuum configuration of a very similar Z2 � Z2 model with matter
parity and other desirable features was presented. However, the vacuum config-
uration discussed there has the unpleasant property that, at least generically, all
Higgs fields attain large masses. In what follows we discuss how this can be avoided
by identifying vacuum configurations with enhanced symmetries. In [353] another
vacuum with the ZR

4 symmetry discussed in the introduction was found by using
the methods presented in this paper. In both models the GUT symmetry is broken
non-locally. This may be advantageous from the point of view of precision gauge
unification [343]. It also avoids fractionally charged exotics, which appear in many
other compactifications (cf. the discussion in [449]).

Labeling of States

We start our discussion with a comment on our notation. In a first step, we label
the fields according to their GSM � ŒSU.3/ � SU.2/ � SU.2/�hid quantum numbers.
In particular, we denote the standard model representations with lepton/Higgs and
d-quark quantum numbers as

Li W .1; 2/�1 ; (23.12a)

NLi W .1; 2/1 ; (23.12b)

Di W .3; 1/�2=3 ; (23.12c)

NDi W .3; 1/2=3 : (23.12d)

In the next step we identify ZR
4 such that the NLi/Li decompose in lepton doublets

`i with odd ZR
4 charges and Higgs candidates hd/hu with even ZR

4 charges etc. The
details of labeling states are given in Sect. 23.3.

VEV Configuration

Following the steps discussed in [444], we obtained a promising configuration in
which the fields

e�.i/ D f�1; �2; �3; �4; �5; �6; �7; �8; �9; �10; �11; �12; �13; �14;
x1; x2; x3; x4; x5; Nx1; Nx3; Nx4; Nx5; y3; y4; y5; y6g (23.13)
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attain VEVs. The full quantum numbers of these fields are given in Table 23.3 in
Sect. 23.3. In order to ensure D-flatness with respect to the hidden sector gauge
factors, in a given basis not all components of the xi/Nxi and yi attain VEVs. Details
are given in Appendix D [276].

Remnant Discrete Symmetries

By giving VEVs to thee�.i/ fields in (23.13), we arrive at a vacuum in which, apart
from GSM and a ‘hidden’ SU(2), all gauge factors are spontaneously broken. The
vacuum exhibits a ZR

4 symmetry, whereby the superpotential W has ZR
4 charge 2.

The ZR
4 charges of the matter fields are shown in Table 23.1. The detailed

origin of the ZR
4 symmetry is discussed later. Given these charges, we confirm by a

straightforward field-theoretic calculation (cf. [359, 390]) that ZR
4 appears indeed

anomalous with universal SU.2/L � SU.2/L � ZR
4 and SU.3/C � SU.3/C � ZR

4

anomalies (see [353] and Appendix A [276]). The statement that ZR
4 appears

anomalous means, as we shall discuss in detail below, that the anomalies are
cancelled by a Green-Schwarz (GS) mechanism. On the other hand, the ZR

4 has
a, by the traditional criteria, non-anomalous ZM

2 subgroup which is equivalent to
matter parity [353].

D-Flatness

As already discussed, we cannot switch on the e�.i/ fields at will; rather we have to
show that there are vacuum configurations in which all these fields acquire VEVs.
This requires to verify that the D- and F-term potentials vanish. With the Hilbert
basis method (see Appendix C [276]) a complete set of D-flat directions is identified
composed ofe�.i/ fields. The dimension of the D-flat moduli space is evaluated using
Singular [450] and the STRINGVACUA [451] package; the result is that there

Table 23.1 ZR
4 charges of the (a) matter fields and (b) Higgs and exotics

(a) Quarks and leptons

qi Nui Ndi `i Nei
ZR
4 1 1 1 1 1

(b) Higgs and exotics

h1 h2 h3 h4 h5 h6 Nh1 Nh2 Nh3 Nh4 Nh5 Nh6 ı1 ı2 ı3 Nı1 Nı2 Nı3
ZR
4 0 2 0 2 0 0 0 2 0 0 2 2 0 2 2 2 0 0

The index i in (a) takes values i D 1; 2; 3. Reprinted from Nuclear Physics B 847, R. Kappl, B.
Petersen, S. Raby, M. Ratz, R. Schieren, and P.K.S. Vaudrevange, “String-derived MSSM vacua
with residual R symmetries,” Page 331, Copyright (2011), with permission from Elsevier
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are 18 D-flat directions; the details of the computation are collected in Appendix
D [276].

F-Term Constraints

Next we consider the F-term constraints. As discussed in Sect. 23, the F-term condi-
tions come from the fields with R-charge 2. The number of independent conditions
is computed in Appendix D [276]. The result is that there are 23 independent
conditions on 18 C 6 D 24 D-flat directions, where the Kähler and complex
structure moduli are included. We therefore expect to find supersymmetric vacuum
configurations in which all the e�.i/ acquire VEVs. In this configuration, almost all
singlet fields, including the geometric moduli are fixed in a supersymmetric way.
It will be interesting to compare this result to similar results found recently in
the context of smooth heterotic compactifications [452]. We expect a significantly
different, i.e. healthier, phenomenology than in the case in which a large number
of singlets acquire mass only after supersymmetry breaking [453, 454]. Notice that
there are two possible caveats. First, the analysis performed strictly applies only
to superpotentials which are, apart from all the symmetries we discuss, generic.
Second, it might happen that there are supersymmetric vacua, but they occur at
large VEVs of some of the fields, i.e. in regions of field space where we no longer
control our construction. Both issues will be addressed elsewhere.

Higgs vs. Matter

The ZM
2 subgroup of the ZR

4 symmetry allows us to discriminate between

• 3 lepton doublets, `i D fL4;L6;L7g,
• 3 d-type quarks, Ndi D f ND1; ND3; ND4g,

on the one hand, and

• Higgs candidates, hi D fL1;L2;L3;L5;L8;L9g and Nhi D fNL1; NL2; NL3; NL4; NL5; NL6g,
• exotic triplets, ıi D fD1;D2;D3g and Nıi D f ND2; ND5; ND6g
on the other hand.

Decoupling of Exotics

With the charges in Table 23.1 we can readily analyze the structure of the mass
matrices. We crosscheck these structures by explicitly computing the couplings
allowed by the string selection rules (cf. [445]). Note there is a caveat: our results are
based on the assumption that all couplings that are allowed by the selection rules will
appear with a non-vanishing coefficient. A e�n in the matrices represents a known
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polynomial of order n in thee� fields which is calculated using string selection rules.
A zero entry in the matrices means that the corresponding coupling is not present in
the perturbative superpotential. The Nhi � hj Higgs mass matrix is

Mh D

0
BBBBBBB@

0 �6 0 �4 0 0

�7 0 �2 0 �13 �14
0 �1 0 e�3 0 0

0 e�3 0 e�5 0 0
e�3 0 �11 0 �8 e�3
e�3 0 �12 0 e�3 �8

1
CCCCCCCA
: (23.14)

Here we omit coefficients, which depend on the three Kähler moduli Ti and complex
structure moduli Ui. Clearly, this mass matrix has rank five, such that there is one
massless Higgs pair

hu D a1 Nh1 C a2 Nh3 C a3 Nh4 ; (23.15a)

hd D b1 h1 C b2 h3 C b3 h5 C b4 h6 (23.15b)

with ai and bj denoting coefficients. The Nı � ı mass matrix is

Mı D
0
@
e�5 0 0

0 �8 e�3
0 e�3 �8

1
A : (23.16)

Hence, the matrix has full rank and all exotics decouple. Note that the block
structure of Mı is not a coincidence but a consequence of the fact that ı2=ı3 and
Nı2= Nı3 form D4 doublets (see below). Altogether we see that all exotics with Higgs
quantum numbers, and all but one pair of exotic triplets, decouple at the linear level
in the e�.i/ fields. This leads to the expectation that all but one pair of exotics get
mass of the order of the GUT (or compactification) scale MGUT while one pair of
triplets might be somewhat lighter. We also note that the presence of colored states
somewhat below MGUT can give a better fit to MSSM gauge coupling unification
(cf. [439]). However, a crucial property of the ı- and Nı triplets is that, due to the ZR

4

symmetry, they do not mediate dimension five proton decay.

Effective Yukawa Couplings

The effective Yukawa couplings are defined by

WY D
X

iD1;3;4

�
.Y.i/u /

fg qf Nug Nhi
�C

X
iD1;3;5;6

h
.Y.i/d /

fg qf Ndg hi C .Y.i/e /
fg `f Neg hi

i
:

(23.17)
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The Yukawa coupling structures are

Y.1/u D
0
@
e�2 e�4 e�6
e�4 e�2 e�6
e�6 e�6 1

1
A ; Y.3/u D

0
@
1 e�6 e�4
e�6 1 e�4
e�4 e�4 e�2

1
A ; (23.18a)

Y.5/e D .Y.5/d /T D
0
@
e�6 e�6 e�6
e�6 e�6 1
e�6 1 e�4

1
A ; (23.18b)

Y.6/e D .Y.6/d /T D
0
@
e�6 e�6 1
e�6 e�6 e�6
1 e�6 e�4

1
A : (23.18c)

Yd and Ye coincide at tree-level, i.e. they exhibit SU(5) GUT relations, originating
from the non-local GUT breaking due to the freely acting Wilson line. There are
additional contributions to Yu from couplings to Nh4 and to Ye/Yd from couplings to
h1;3 which can be neglected if the VEVs of thee�.i/ fields are small.

Because of the localization of the matter fields, we expect the renormalizable
(1,3) and (3,1) entries in Y.6/e to be exponentially suppressed.

Gauge-Top Unification

The .3; 3/ entry of Yu is related to the gauge coupling. More precisely, in an
orbifold GUT limit in which the first Z2 orbifold plane is larger than the other
dimensions there is an SU(6) bulk gauge symmetry, and the ingredients of the top
Yukawa coupling hu (i.e. the fields Nh1;3;4), Nu3 and q3 are bulk fields of this plane,
i.e. hypermultiplets in the N D 2 supersymmetric description. As discussed in
[440], this implies that the top Yukawa coupling yt and the unified gauge coupling
g coincide at tree-level. Moreover, localization effects in the two larger dimensions
[455] will lead to a slight reduction of the prediction of yt at the high scale such that
realistic top masses can be obtained.

D4 Flavor Symmetry

The block structure of the Yukawa matrices is not a coincidence but a consequence
of a D4 flavor symmetry [436], related to the vanishing Wilson line in the e1
direction, W1 D 0 (cf. e.g. [384]). The first two generations transform as a D4
doublet, while the third generation is a D4 singlet.
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Neutrino Masses

In our model we have 11 neutrinos, i.e. SM singlets whose charges are odd under
ZR
4 meaning that they have odd ZM

2 charge, where ZM
2 is the matter parity subgroup

of ZR
4 . Their mass matrix has rank 11 at the perturbative level. The neutrino Yukawa

coupling is a 3�11matrix and has full rank. Hence the neutrino see-saw mechanism
with many neutrinos [456] is at work.

Proton Decay Operators

The ZR
4 symmetry forbids all dimension four and five proton decay operators at the

perturbative level [353]. In addition, the non-anomalous matter parity subgroupZM
2

forbids all dimension four operators also non-perturbatively. The dimension five
operators like q q q ` are generated non-pertubatively, as we will discuss below.

Non-perturbative Violation of ZR
4

Once we include the terms that are only forbidden by the ZR
4 symmetry, we obtain

further couplings. An example for such an additional term is the dimension five
proton decay operator,

Wnp � q1 q1 q2 `1 e�a S .x4Nx5 C x5 Nx4/
��
�11
�12

�
�
�
�11
�12

��3
�4 �

2
7

��
�9
�10

�
�
�
�9
�10

��

(23.19)

where we suppressed coefficients. The bracket structure between the �11/�12 and
�9/�10 is a consequence of the non-Abelian D4 symmetry, where these fields
transform as a doublet. The dot ‘ � ’ indicates the standard scalar product. Note that
there are invariants with more than two D4 charged fields which cannot be written
in terms of a scalar product. Further, S is the dilaton and the coefficient a D 8�2 in
e�a S is such that e�a S has positive anomalous charge with respect to the normalized
generator of the ‘anomalous’ U(1). This generator is chosen such that it is the gauge
embedding of the anomalous space group element2 (cf. Eq. (23.28)),

tanom D W3 C e8 � e8 lattice vectors : (23.20)

The discrete Green-Schwarz mechanism is discussed in detail in [364].

2See [390] for the discussion in a more general context. Note that we can always bring the
anomalous space group element to the form .� k !`; 0/ by redefining the model input appropriately.
This amounts to a redefinition of the ‘origin’ of the orbifold.
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Solution to the � Problem

The ZR
4 anomaly has important consequences for the MSSM � problem. The �

term is forbidden perturbatively by ZR
4 , however, it appears at the non-perturbative

level. Further, this model shares with the mini-landscape models the property that
any allowed superpotential term can serve as an effective � term (cf. the discussion
in [371]). This fact can be seen from higher-dimensional gauge invariance [457].
Therefore, the (non-perturbative)� term is of the order of the gravitino mass,

� � hW i � m3=2 (23.21)

in Planck units. If some ‘hidden’ sector dynamics induces a non-trivial hW i, the �
problem is solved.

In this model, there is only a ‘toy’ hidden sector with an unbroken SU(2) gauge
group and one pair of massless doublets whose mass term is prohibited by ZR

4 . This
sector has the structure discussed by Affleck, Dine and Seiberg (ADS) [458]. It turns
out that the ADS superpotential is ZR

4 covariant. However, the hidden gauge group
is probably too small for generating a realistic scale of supersymmetry breakdown.
Yet there are alternative ways, such as the one described in [371], for generating a
hierarchically small hW i.

Origin of ZR
4

In the orbifold CFT description the ZR
4 originates from the so-called H-momentum

selection rules [430] (see also [383, 414]). These selection rules appear as discrete
R symmetries in the effective field theory description of the model. It should be
stressed that in large parts of the literature the order of these symmetries was given
in an unfortunate way. For instance, the Z2 orbifold plane was said to lead to a ZR

2

symmetry, but it turned out that there are states with half-integer charges. It is more
appropriate to call this symmetry ZR

4 , and to deal with integer charges only. In the
present model we have three ZR

4 symmetries at the orbifold point, stemming from
the three Z2 orbifold planes.

H-momentum corresponds to angular momentum in the compact space; therefore
the discrete R symmetries can be thought of as discrete remnants of the Lorentz
symmetry of internal dimensions. That is to say that the orbifold compactification
breaks the Lorentz group of the tangent space to a discrete subgroup. In this study
we content ourselves with the understanding that these symmetries appear in the
CFT governing the correlators to which we match the couplings of our effective
field theory. The precise geometric interpretation of this symmetry in field theory
will be discussed elsewhere.
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Table 23.2 The states with
their quantum number w.r.t.
the SM and the hidden sector

Label qi Nui NDi Di Li NLi Nei xi Nxi yi zi
# 3 3 6 3 9 6 3 5 5 6 6

SU.3/C 3 3 3 3 1 1 1 1 1 1 1

SU.2/L 2 1 1 1 2 2 1 1 1 1 1

U.1/Y
1
3

- 4
3

2
3

- 2
3

-1 1 2 0 0 0 0

SU.3/ 1 1 1 1 1 1 1 3 3 1 1

SU.2/ 1 1 1 1 1 1 1 1 1 2 1

SU.2/ 1 1 1 1 1 1 1 1 1 1 2

Reprinted from Nuclear Physics B 847, R. Kappl, B. Petersen,
S. Raby, M. Ratz, R. Schieren, and P.K.S. Vaudrevange, “String-
derived MSSM vacua with residual R symmetries,” Page 344,
Copyright (2011), with permission from Elsevier

The actual ZR
4 charges of ŒSU.3/ � SU.2/ � SU.2/�hid invariant expressions in

this model are given by

qZR
4

D qX C R2 C 2n3 ; (23.22)

where qX is the U(1) charge generated by

tX D .4; 0; 10;�10;�10;�10;�10;�10/ .�10; 0; 5; 5;�5; 15;�10; 0/ ;
(23.23)

R2 denotes the R charge with respect to the second orbifold plane and n3 is the
localization quantum number in the third torus. The relevant quantum numbers are
given in Table 23.2. The expression (23.22) for qZR

4
is not unique, there are 17

linear combinations of U(1) charges and discrete quantum numbers which can be
used to rewrite the formula without changing the ZR

4 charges. Also the U(1) factors
contained in ŒSU.3/�SU.2/�SU.2/�hid can be used to redefine tX . We refrain from
spelling this out as we find it more convenient to work with invariant monomials (cf.
the discussion in Appendix D [276]). It is straightforward to see that all monomials
we switch on have R charge 0.

23.2 Summary

We have re-emphasized the important role of discrete symmetries in string model
building. As an application, we discussed an explicit string model which exhibits
MSSM vacua with a ZR

4 symmetry, which has recently been shown to be the unique
symmetry for the MSSM that forbids the � term at the perturbative level, allows
Yukawa couplings and neutrino masses, and commutes with SO(10). This ZR

4 has
a couple of appealing features. First, the � term and dangerous dimension five
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proton decay operators are forbidden at the perturbative level and appear only
through (highly suppressed) non-perturbative effects. Second, at the perturbative
level, the expectation value of the superpotential is zero; a non-trivial expectation
value is generated by non-perturbative effects. These two points imply that � is of
the order of the gravitino mass m3=2, which is set by the expectation value of the
superpotential (in Planck units).

The model is a Z2 �Z2 orbifold compactification of the E8 � E8 heterotic string.
We discussed how to search for field configurations which preserve ZR

4 and how
to find supersymmetric vacua within such configurations. The Hilbert basis method
allows one to construct a basis for all gauge invariant holomorphic monomials, and
therefore to survey the possibilities of satisfying the D-term constraints. As we have
seen, in the case of residual R symmetries it may in principle happen that the F-term
equations over-constrain the system. This is not the case in the present model, i.e.
there are supersymmetric vacua with the exact MSSM spectrum and a residual ZR

4

symmetry. Let us highlight the features of the model:

• exact MSSM spectrum, i.e. no exotics;
• almost all singlet fields/moduli are fixed in a supersymmetric way;
• non-local GUT breaking, i.e. the model is consistent with MSSM precision gauge

unification;
• dimension four proton decay operators are completely absent as ZR

4 contains the
usual matter parity as a subgroup;

• dimension five proton decay operators only appear at the non-perturbative level
and are completely harmless;

• the gauge and top-Yukawa couplings coincide at tree level;
• see-saw suppressed neutrino masses;
• � is related to the vacuum expectation value of the superpotential and therefore

of the order of the gravitino mass;
• there is an SU(5) GUT relation between the 	 and bottom masses.

There are also some drawbacks: first, there are SU(5) relations for the light
generations and, second, the hidden sector gauge group is only SU(2) and therefore
probably too small for explaining an appropriate scale of dynamical supersymmetry
breaking. In addition, it may not be possible to blowup all the fixed points, in order
to obtain a smooth supergravity limit [459]. Once again, as in the case of the “mini-
landscape” models discussed earlier in Chap. 21, this is not necessarily a problem
for the string model.

There is however one other major point in favor of this orbifold construction. The
model has an orbifold GUT symmetry which is broken to the Standard Model via a
non-local Wilson line. This is in contrast to the “mini-landscape” models where the
orbifold GUT breaking was local. As discussed earlier in Chap. 18, with non-local
GUT breaking the compactification scale is identified with the 4D GUT scale. The
three Standard Model gauge couplings necessarily unify at this scale.
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23.3 Details of the Model

In Table 23.3 we list the full spectrum. In addition to the states shown there, the
spectrum contains the following (untwisted) moduli: the dilaton S, three Kähler
moduli Ti and three complex structure moduli Ui.

The orbifold model is defined by a torus lattice that is spanned by six orthogonal
vectors e˛, ˛ D 1; : : : ; 6, the Z2 � Z2 twist vectors v1 D .0; 1=2;�1=2; 0/ and
v2 D .�1=2; 0; 1=2; 0/, and the associated shifts

V1 D
�

�1
2
;�1
2
; 0; 0; 0; 0; 0; 0

�
.0; 0; 0; 0; 0; 0; 0; 0/ ; (23.24a)

V2 D
�
0;
1

2
;�1
2
; 0; 0; 0; 0; 0

�
.0; 0; 0; 0; 0; 0; 0; 0/ ; (23.24b)

and the six discrete Wilson lines

W1 D �
08
 �
08

; (23.25)

W3 D
�
3

2
;
1

2
;
1

2
;
1

2
;
1

2
;
1

2
;
1

2
;�1
2

��
0; 0;

1

2
;
1

2
;
1

2
;
1

2
; 1; 1

�
;

W5 D
�

�7
4
;
7

4
;�1
4
;�3
4
;
1

4
;
1

4
;
1

4
;�3
4

��
�3
4
;
5

4
;�5
4
;�5
4
;
1

4
;
1

4
;�3
4
;
5

4

�
;

W6 D
�
3

2
;
1

2
;�3
2
;�1
2
;�1
2
;�3
2
;
1

2
;
1

2

��
�3
2
;�1
2
;�1
2
;
3

2
;�3
2
;�1
2
;�3
2
;
3

2

�
;

W2 D W4 D W6 ;

corresponding to the six torus directions e˛ . Additionally, we divide out the Z2
symmetry corresponding to

	 D 1

2
.e2 C e4 C e6/ (23.26)

with a gauge embedding denoted by W (the freely acting Wilson line) where

W D 1

2
.W2 C W4 C W6/ D 3

2
W2 : (23.27)

The anomalous space group element reads

ganom D .k; `I n1; n2; n3; n4; n5; n6/ D .0; 0I 0; 0; 1; 0; 0; 0/ ; (23.28)
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where the boundary conditions of twisted string are

X.	; � C 2�/ D #k !` X.	; �/C n˛e˛ (23.29)

with # and ! denoting the rotations corresponding to v1 and v2. The spectrum is
given in Table 23.2. In addition there are 37 GSM � ŒSU.3/ � SU.2/ � SU.2/�hid

singlets.



Chapter 24
SUSY Breaking and Moduli Stabilization

In string models all couplings, i.e. both gauge and Yukawa couplings, depend on
the values of moduli. In addition, the size of the extra 6 dimensions also depend
on the size of moduli. Finally, the value of the GUT symmetry breaking scale and
proton decay rates depend on the size of the extra dimensions. In addition, in order
to stabilize all the moduli one must necessarily spontaneously break supersymmetry.
All in all this remaining task of string model building is to say the least, daunting.
Most string models have of order 100 moduli. These include the dilaton, Kähler
(or volume) moduli, complex structure moduli and chiral moduli. The mechanism
for stabilizing these moduli are different in the different string theory limits. In
orbifold constructions of the heterotic string one typically considers simplified
models with few moduli such as the dilaton, one volume modulus and perhaps one
chiral modulus. The construction one uses makes use of non-perturbative gaugino
condensates, world sheet instantons and anomalous U.1/ D-terms [453, 460–
467]. For example in [453] we summarized these different mechanisms and the
consequences for soft SUSY breaking parameters. In [181] it was shown how
to obtain “mirage mediation” in the heterotic string context. Finally in [276] we
showed that in the case of a heterotic orbifold model with a ZR

4 symmetry one can
stabilize most of the moduli in a supersymmetric vacuum at the string scale. All
others must be stabilized via the aforementioned mechanisms. Moduli stabilization
in smooth constructions of the heterotic string have been considered in [468].

In type II string constructions it was shown that all geometric moduli can
be stabilized by gauge fluxes [469]. The consequences for soft SUSY breaking
parameters was worked out in [178, 179, 470]. Finally moduli stabilization in
M-theory on G2 manifolds was considered in [471, 472].

In this chapter we focus on the problem of moduli stabilization and SUSY
breaking in the context of heterotic orbifold models. The analysis is based on the
discussion in [453]. In Sect. 24.1 we summarize the general structure of the Kähler
and superpotential in heterotic orbifold models. The models have a perturbative
superpotential satisfying modular invariance constraints, an anomalousU.1/A gauge

© Springer International Publishing AG 2017
S. Raby, Supersymmetric Grand Unified Theories, Lecture Notes in Physics 939,
DOI 10.1007/978-3-319-55255-2_24
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338 24 SUSY Breaking and Moduli Stabilization

symmetry with a dynamically generated Fayet-Illiopoulos D-term and a hidden
QCD-like non-Abelian gauge sector generating a non-perturbative superpotential.
In Sect. 24.2 we consider a simple model with a dilaton, S, one volume modulus, T,
and three standard model singlets. The model has only one gaugino condensate,
as is the case for the “benchmark models” of the “mini-landscape” [406]. We
obtain a ‘hybrid KKLT’ kind of superpotential that behaves like a single-condensate
for the dilaton S, but as a racetrack1 for the T and, by extension, also for the
U moduli; and an additional matter F term, driven by the cancelation of an
anomalous U.1/A D-term, is the seed for successful up-lifting. Previous analyses
in the literature have also used an anomalous U.1/A D-term in coordination with
other perturbative or non-perturbative terms in the superpotential to accomplish
SUSY breaking and up-lifting [460, 462–467, 476–479]. We conclude that a single
gaugino condensate is sufficient to break supersymmetry, stabilize all the moduli
and generate a de Sitter vacuum.

24.1 General Structure

In this section we consider the supergravity limit of heterotic orbifold models.
However, we will refer to the “mini-landscape” models for definiteness. We discuss
the general structure of the Kähler potential, K , the superpotential, W , and gauge
kinetic function, fa for generic heterotic orbifold models. The “mini-landscape”
models are defined in terms of a Z6-II orbifold of the six internal dimensions of the
ten dimensional heterotic string. The orbifold is described by a three dimensional
“twist” vector v, which acts on the compact directions. We define the compact
directions in terms of complex coordinates:

Z1 � X4 C iX5;

Z2 � X6 C iX7; (24.1)

Z3 � X8 C iX9:

The twist is defined by the action Zi ! e2� ivi Zi for i D 1; 2; 3, and for Z6-II we
have v D 1

6
.1; 2;�3/ or a (60ı, 120ı, 180ı) rotation about the first, second and

third torus, respectively. This defines the first twisted sector. The second and fourth
twisted sectors are defined by twist vectors 2v and 4v, respectively. Note, the third
torus is unaffected by this twist. In addition, for the third twisted sector, generated
by the twist vector 3v, the second torus is unaffected. Finally the fifth twisted
sector, given by 5v contains the CP conjugate states from the first twisted sector.
Twisted sectors with un-rotated tori contain N D 2 supersymmetric spectra. This
has consequences for the non-perturbative superpotential discussed in Sect. 24.1.3.

1Racetrack models for SUSY breaking are discussed in [473–475].
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Finally, these models have three bulk volume moduli, Ti; i D 1; 2; 3 and one bulk
complex structure modulus, U, for the third torus. In general, there are h.1;1/ volume
moduli and h.2;1/ complex structure moduli.

24.1.1 Anomalous U.1/A and Fayet-Illiopoulos D-Term

The orbifold limit of the heterotic string has one anomalous U.1/A symmetry.
The dilaton superfield S, in fact, transforms non-trivially under this symmetry. Let
VA; Va be the gauge superfields with gauge covariant field strengths, W˛

A ;W
˛
a , of

gauge groups, U.1/A; Ga, respectively. The Lagrangian in the global limit is given
in terms of a Kähler potential [15, 154, 480–482]

K D � log.S C S � ıGSVA/C
X
a

.Qae
VaC2qaVAQa C QQae

�VaC2QqaVA QQa/ (24.2)

and a gauge kinetic superpotential

W D 1
2
Œ S
4
.
P

a kaTrW
˛
a W˛a C kATrW˛

AW˛A/C h:c:�: (24.3)

Note qa; Qqa are the U.1/A charges of the ‘quark’, Qa, and ‘anti-quark’, QQa, super-
multiplets transforming under Ga and ka; kA are the Kač-Moody levels of the
respective group factors.

Under a U.1/A super-gauge transformation with parameter�, one has2

ıAVA D �i.� � N�/=2;

ıAS D �i
ıGS

2
�; (24.4)

and

ıA˚ D iq˚�˚ (24.5)

for any charged multiplet ˚ . The combination

S C S � ıGSVA (24.6)

is U.1/A invariant. ıGS is the Green-Schwarz coefficient given by

ıGS D 4
TrQA

192�2
D .qa C Qqa/Nfa

4�2
(24.7)

2Note, the variation of the dilaton provides the Green-Schwarz cancelation of the U.1/A anomaly.
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where the middle term is for the U.1/A-gravity anomaly and the last term is for the
U.1/A � .Ga/

2 mixed anomaly.
The existence of an anomalous U.1/A has several interesting consequences. Due

to the form of the Kähler potential [Eq. (24.2)] we obtain a Fayet-IlliopoulosD-term
given by

�A D ıGS

2.S C S/
D �1

2
ıGS @SK (24.8)

with the U.1/A D-term contribution to the scalar potential given by

VD D 1

S C S

 X
a

XA
a @aK �a C �A

!2
(24.9)

where XA
a are Killing vectors for U.1/A. In addition, clearly the perturbative part

of the superpotential must be U.1/A invariant. But moreover, it constrains the
non-perturbative superpotential as well. In particular, if the dilaton appears in the
exponent, the product eq˚ S˚ıGS=2 is, and must also be, U.1/A invariant.

24.1.2 Target Space Modular Invariance

In this section, we wish to present the modular dependence of the gauge kinetic
function, the Kähler potential, and of the superpotential in as general a form as
possible. Most studies in the past have worked with a universal T modulus, and
neglected the effects of the U moduli altogether. Such a treatment is warranted, for
example, in the Z3 orbifolds where there are no U moduli. If we want to work in
the limit of a stringy orbifold GUT [383] which requires one of the T moduli to be
much larger than the others, or in the Z6-II orbifolds, however, it is impossible to
treat all of the T and U moduli on the same footing.

Consider the SL.2;Z/ modular transformations of T and U given by [483–494]3

T ! aT � ib

icT C d
; ad � bc D 1; a; b; c; d 2 Z; (24.10)

and

log
�
T C NT ! log

�
T C NT

.icT C d/.�ic NT C d/

�
; (24.11)

3For an excellent review with many references, see [495].
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with a similar transformation for U. The Kähler potential for moduli to zeroth order
is given by:

K D �
h.1;1/X
iD1

log
�
Ti C NTi

 �
h.2;1/X
jD1

log
�
Uj C NUj



D �
3X

iD1
log

�
Ti C NTi

 � log
�
U C NU (24.12)

where the last term applies to the “mini-landscape” models, since in this case
h.1;1/ D 3; h.2;1/ D 1. Under the modular group, the Kähler potential transforms
as

K ! K C
h.1;1/X
iD1

log jiciTi C dij2 C
h.2;1/X
jD1

log jicjUj C djj2: (24.13)

The scalar potential V is necessarily modular invariant. We have

V D eG


GIG

I NJGNJ � 3
�

(24.14)

where G D K C log jW j2. Hence for the scalar potential to be invariant under the
modular transformations, the superpotential must also transform as follows:

W !
h.1;1/Y
iD1

h.2;1/Y
jD1
.iciT

i C di/
�1.icjUj C dj/

�1W ;

NW !
h.1;1/Y
iD1

h.2;1/Y
jD1
.�ici NTi C di/

�1.�icj NUj C dj/
�1 NW : (24.15)

This can be guaranteed by appropriate powers of the Dedekind � function multi-
plying terms in the superpotential.4 This is due to the fact that under a modular
transformation, we have

�.T/ ! .icT C d/1=2�.T/; (24.16)

4These terms arise as a consequence of world-sheet instantons in a string calculation. In fact, world
sheet instantons typically result in more general modular functions [488–494].
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up to a phase, where

�.T/ D exp.��T=12/
1Y
nD1

�
1 � e�2�nT : (24.17)

The Kähler potential for matter fields is of the form

K � ˚I N̊ I
h.1;1/Y
iD1

�
Ti C NTi

�niI

h.2;1/Y
jD1

�
Uj C NUj

�`jI D ˚I N̊ I �I: (24.18)

The

�I �
Y
i

�
Ti C NTi

�niI
Y
j

�
Uj C NUj

�`jI (24.19)

are the Kähler metrics for the chiral multiplets, ˚I , and niI; `
i
I are the so-called

modular weights.
The transformation of both the matter fields and the superpotential under the

modular group fixes the modular dependence of the interactions. A field in the
superpotential transforms as

˚I ! ˚I

h.1;1/Y
iD1

h.2;1/Y
jD1

�
iciT

i C di
�niI

�
icjU

j C dj
�`jI : (24.20)

The modular weights niI and `jI [446, 496] depend on the localization of the matter
fields on the orbifold. For states I in the ith untwisted sector, i.e. those states with
internal momentum in the ith torus, we have niI D `iI D 1, otherwise the weights
are 0. For twisted sector states, we first define �.k/, which is related to the twisted
sector k.D 1; : : : ;N � 1/ and the orbifold twist vector v by

�i.k/ � kvi mod 1: (24.21)

Further, we require

X
i

�i.k/ � 1: (24.22)

Then the modular weight of a state in the kth twisted sector is given by

niI � .1 � �i.k//C Ni � NNi for �i.k/ ¤ 0 (24.23)

niI � Ni � NNi for �i.k/ D 0:
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The Ni . NNi/ are integer oscillator numbers for left-moving oscillators Q̨ i ( NQ̨ Ni),
respectively. Similarly,

`iI � .1 � �i.k// � Ni C NNi for �i.k/ ¤ 0 (24.24)

`iI � �Ni C NNi for �i.k/ D 0:

In general, one can compute the superpotential to arbitrary order in powers of
superfields by a straightforward application of the string selection rules [497–500].
One assumes that any term not forbidden by the string selection rules appears with
order one coefficient. In practice, even this becomes intractable quickly, and we
must cut off the procedure at some low, finite order. More detailed calculations
of individual terms give coefficients dependent on volume moduli due to string
world sheet instantons. In general the moduli dependence can be obtained using
the constraint of target space modular invariance. Consider a superpotential term
for the “mini-landscape” models, with three T moduli and one U modulus, of the
form:

W3 D YIJK˚I˚J˚K : (24.25)

We assume that the fields ˚I;J;K transform with modular weights niI;J;K and `3I;J;K
under Ti; i D 1; 2; 3 and U, respectively. Using the (net) transformation property
of the superpotential, and the transformation property of �.T/ under the modular
group, we have (for non-universal moduli):

YIJK � hIJK

3Y
iD1
�.Ti/

�Ti �.U/�U

where �Ti D �2.1� niI � niJ � niK/; �U D �2.1� `3I � `3J � `3K/ and hIJK are dimen-
sionless constants.5 This is easily generalized for higher order interaction terms in
the superpotential. We see that the modular dependence of the superpotential is
rarely symmetric under interchange of the Ti or Ui. Note, when minimizing the
scalar potential we shall use the approximation �.T/�T � e�bT with b D ��T=12.
(Recall, at large T, we have log.�.T// � ��T=12.) This approximation misses the
physics near the self-dual point in the potential, nevertheless, it is typically a good
approximation.

As a final note, Wilson lines break the SL.2;Z/ modular group down to a
subgroup [501]. This has the effect of an additional differentiation of the moduli
as they appear in the superpotential. In particular, factors of �.Ti/ are replaced
by factors of �.NTi/ or �.Ti=N/ for Wilson lines in ZN . In summary, the different

5Note, the constants �Ti ; �U can quite generally have either sign, depending upon the modular
weights of the fields at the particular vertex.
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modular dependence of twisted sector fields and the presence of Wilson lines leads
quite generally to anisotropic orbifolds [502].

24.1.3 Gauge Kinetic Function and Sigma Model Anomaly

To one loop, the string-derived gauge kinetic function is given by Dixon et al. [503],
Derendinger et al. [504], Ibanez et al. [505], Lust and Munoz [506], Ibanez and Lust
[446], Kaplunovsky and Louis [507]

fa.S;T/ D kaS C 1

8�2

h.1;1/X
iD1

�
˛ia � kaı

i
�


log

�
�.Ti/

2

C 1

8�2

h.2;1/X
jD1

�
˛ja � kaı

j
�


log

�
�.Uj/

2
(24.26)

where ka is the Kač-Moody level of the group, which we will normally take to be 1.
The constants ˛ia are model dependent, and are defined as

˛ia � `.adj/�
X
repI

`a.repI/.1C 2niI/:

`.adj/ and `a.repI/ are the Dynkin indices6 of the adjoint representation and of
the matter representation I of the group Ga, respectively [57] and niI are modular
weights. The ıi� terms are necessary to cancel an anomaly in the underlying �-
model, which induces a transformation in the dilaton field under the modular group:

S ! S C 1

8�2

h.1;1/X
iD1

ıi� log .iciTi C di/C 1

8�2

h.2;1/X
jD1

ıi� log
�
icjU

j C dj

: (24.27)

It is important to note that the factor

�
˛ia � kaı

i
�

 � b.ND2/
a .i/

jDj=jDij (24.28)

where b.ND2/
a .i/ is the beta function coefficient for the ith torus. It is non-zero if and

only if the k-th twisted sector has an effective N D 2 supersymmetry. Moreover this
occurs only when, in the k-th twisted sector, the ith torus is not rotated. The factors

6The Dynkin index `a.repI/ � TR defined earlier in Eq. (5.38). Thus if TI
a are the generators of the

group Ga in the representation I, then we have Tr.TI
aT

I
b/ D `a.repI/ıab.
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jDj; jDij are the degree of the twist group D and the little group Di, which does not
rotate the ith torus. For example, for the “mini-landscape” models with D D Z6-II
we have jDj D 6 and jD2j D 2; jD3j D 3 since the little group keeping the second
(third) torus fixed is Z2 .Z3/. The first torus is rotated in all twisted sectors. Hence,
the gauge kinetic function for the “mini-landscape” models is only a function of T2
and T3.

Taking into account the sigma model anomalies, the heterotic string Kähler
potential has the following form (where we have included the loop corrections to
the dilaton [503, 504])

K D � log

0
@S C NS C 1

8�2

h.1;1/X
iD1

ıi� log
�
Ti C NTi

C 1

8�2

h.2;1/X
jD1

ıj� log
�
Uj C NUj


1
A

�
h.1;1/X
iD1

log
�
Ti C NTi

 �
h.2;1/X
jD1

log
�
Uj C NUj


: (24.29)

The first line of Eq. (24.29) is modular invariant by itself, and one can redefine the
dilaton, Y, such that

Y � S C NS C 1

8�2

h.1;1/X
iD1

ıi� log
�
Ti C NTi

C 1

8�2

h.1;2/X
jD1

ıj� log
�
Uj C NUj


; (24.30)

where Y is invariant under the modular transformations.

24.1.4 Non-perturbative Superpotential

In all “mini-landscape” models [437], and most orbifold heterotic string con-
structions, there exists a hidden sector with non-Abelian gauge interactions and
vector-like matter carrying hidden sector charge. In the “benchmark” models [406]
the hidden sector gauge group is SU.4/with chiral matter in the 4CN4 representation.

In this section let us consider a generic hidden sector with gauge group SU.N1/˝
SU.N2/ ˝ U.1/A, where ‘A’ stands for anomalous.7 There are Nf1 and Nf2 flavors
of quarks Q1 and Q2 in the fundamental representation (along with anti-quarks
QQ1 and QQ2, in the anti-fundamental representations), as well as two singlet fields,
called � and �. The charge assignments are listed in Table 24.1. We assume the
existence of two moduli, S and T, which enter the non-perturbative superpotential

7Note, for clarity, this is just a toy model which is not derived directly from any particular string
model.
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Table 24.1 Charge
assignments for the fields in a
generic hidden sector

� � Q1 Q2 QQ1 QQ2
U.1/A �1 q� q1 q2 Qq1 Qq2
SU.N1/ 1 1 � 1 N� 1

SU.N2/ 1 1 1 � 1 N�
Flavor indices are suppressed

through the gauge kinetic function, namely f D f .S;T/. The model also allows for
T dependence in the Yukawa sector.

Non-perturbative effects generate a potential for the S and T moduli. Gaugino
condensation will generate a scale �SQCD , which is determined purely by the
symmetries of the low energy theory:

�a.S;T/ D e� 8�2

ˇa
fa.S;T/; (24.31)

where ˇa D 3Na � Nfa is the one loop beta function coefficient of the theory. At
tree level fa.S;T/ D S, however, we include the possibility of threshold corrections
which introduce a dependence on the T modulus [503, 504]. We also find that U.1/A
and modular invariance together dictate a very specific form for the non-perturbative
superpotential.

In the “mini-landscape” analysis the effective mass terms for the vector-like
exotics were evaluated. They were given as a polynomial in products of chiral
MSSM singlet fields [chiral moduli]. It was shown that all vector-like exotics obtain
mass8 when the chiral moduli obtain VEVs at supersymmetric points in moduli
space. In our example let us, for simplicity, take couplings between the quarks and
the field � to be diagonal in flavor space. Mass terms of the form

M1.�;T/Q1 QQ1 C M2.�;T/Q2 QQ2 (24.32)

are dynamically generated when � receives a non-zero VEV, which we will discuss
below. A key assumption is that those mass terms are larger than the scale of gaugino
condensation, so that the quarks and anti-quarks may be consistently integrated out.
If this can be accomplished, then one can work in the pure gauge limit [508].9

8In fact, one of the SU.4/ quark- anti-quark pairs remained massless in the two “benchmark”
models.
9There is a check on the consistency of this approach: at the end of the day, after calculating the
VEVs of the scalars, we can verify that the mass terms for the quarks are indeed of the correct
magnitude.
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Before we integrate out the meson fields (Ma � Qa QQa; a D 1; 2),10 the non-
perturbative superpotential (plus quark masses) for Nfa < Na is of the form [458]

WNP D
X
aD1;2

2
4Ma.�;T/Qa QQa C .Na � Nfa/

 
�
3Na�Nfa
a

detQa QQa

! 1
Na�Nfa

3
5 ; (24.33)

with Ma.�;T/ D cae�baT�qaCQqa where ca is a constant. Note, given the charges for
the fields in Table 24.1 and using Eqs. (24.4), (24.7) and (24.31), one sees that WNP

is U.1/A invariant. The Kähler potential for the hidden sector is assumed to be of
the form

K D � log.S C S/� 3 log.T C T/C ˛��e
�2VA� C ˛��e

2q�VA� (24.34)

C
X
aD1;2

˛a.Qae
VaC2qaVAQa C QQae

�VaC2QqaVA QQa/

The quantities ˛�; ˛�; ˛i are generally functions of the modulus T, where the
precise functional dependence is fixed by the modular weights of the fields (see
Sect. 24.1.2). Vi and VA denote the vector superfields associated with the gauge
groups Gi D SU.Ni/ and U.1/A.

The determinant of the quark mass matrix is given by

detMa.�;T/ D


cae

�baT�qaCQqa
�Nfa

: (24.35)

We have taken the couplings between � and the quarks to have exponential
dependence on the T modulus, an ansatz which is justified by modular invariance
(see Sect. 24.1.2). Inserting the meson equations of motion and Eq. (24.35) into
Eq. (24.33), we have

WNP D
X
aD1;2

"
Na



cae

�baT�qaCQqa
� Nfa

Na
Œ�a.S;T/�

3Na�Nfa
Na

#
:

Note that the transformation of the superpotential under the modular group in
Eq. (24.15) also requires that the (non-perturbative) superpotential obey

WNP !
h.1;1/Y
iD1

h.2;1/Y
jD1
.iciT

i C di/
�1.icjUj C dj/

�1WNP: (24.36)

10The meson field, Qa QQa is assumed to be diagonal and proportional to the identity in flavor space.
Thus not breaking the SU.Nfa / flavor symmetry.
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Because the non-perturbative lagrangian must be invariant under all of the symme-
tries of the underlying string theory, it must be that [475, 506, 509–512]:

WNP � A � e�aS

h.1;1/Y
iD1

h.2;1/Y
jD1

�
�.Ti/

�2C 3

4�2ˇ
ıi�
�
�.Uj/

�2C 3

4�2ˇ
ı
j
� (24.37)

where a � 24�2

ˇ
and ˇ D 3`.adj/ � P

I `.repI/ is the one-loop beta function
coefficient, and A is generally a function of the chiral matter fields appearing in
Ma.�;T/. This, coupled with the one loop gauge kinetic function in Eq. (24.26),
gives the heterotic generalization of the Racetrack superpotential.

In the following Sect. 24.2, we construct a simple model using the qualitative
features outlined in this section. This model is novel because it requires only
one non-Abelian gauge group to stabilize moduli and give a de Sitter vacuum.
We have also constructed two condensate models, however, the literature already
contains several examples of the “racetrack” in regards to stabilization of S and T
moduli. Moreover in the “mini-landscape” models, whose features we are seeking
to reproduce, there are many examples of hidden sectors containing a single non-
Abelian gauge group [437], while there are no examples with multiple hidden
sectors.

24.2 Moduli Stabilization and Supersymmetry
Breaking in the Bulk

In this section we construct a simple, generic heterotic orbifold model which
captures many of the features discussed in Sect. 24.1. In particular, it is a single
gaugino condensate model with the following fields—dilaton (S), modulus (T) and
MSSM singlets (�1; �2; �). The model has one anomalous U.1/A with the singlet
charges given by (q�1 D �2; q�2 D �9; q� D 20). The Kähler and superpotential
are given by11

K D � logŒS C NS� � 3 logŒT C T�C �1�1 C �2�2 C �� (24.38)

W D e�bT.w0 C �.�101 C ��1�
2
2//C A �p

2 e
�aS�b2T : (24.39)

11The coefficient A [Eq. (24.39)] is an implicit function of all other non-vanishing chiral singlet
VEVs which would be necessary to satisfy the modular invariance constraints, i.e. A D A.h�Ii/. If
one re-scales the U.1/A charges, q�i ; q� ! q�i=r; q�=r, then the U.1/A constraint is satisfied with
r D 15p (assuming no additional singlets in A). Otherwise we may let r and p be independent. This
re-scaling does not affect our analysis, since the vacuum value of the �i; � term in the superpotential
vanishes.
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In addition, there is an anomalous U.1/A D-term given by

DA D 20�� � 2�1�1 � 9�2�2 � 1
2
ıGS @SK (24.40)

with ıGS D .qCQq/Nf

4�2
D Nf =.4�

2/.
In the absence of the non-perturbative term (with coefficient A) the theory

has a supersymmetric minimum with h�i D h�1i D 0 and h�2i ¤ 0 and
arbitrary. This property mirrors the situation in the “mini-landscape” models where
supersymmetric vacua have been found in the limit that all non-perturbative effects
are neglected. We have also added a constant w0 D w0.h�Ii/ which is expected to
be generated (in the “mini-landscape” models) at high order in the product of chiral
moduli due to the explicit breaking of an accidental R symmetry which exists at
lower orders [371].12 The T dependence in the superpotential is designed to take
into account, in a qualitative way, the modular invariance constraints of Sect. 24.1.2.
We have included only one T modulus, assuming that the others can be stabilized
near the self-dual point [509, 513]. Moreover, as argued earlier, the Ti and U moduli
enter the superpotential in different ways (see Sect. 24.1.2). This leads to modular
invariant solutions which are typically anisotropic [502].13

Note, that the structure, W � w0e�bT C �2 e�aS�b2T gives us the crucial
progress14:

1. a ‘hybrid KKLT’ kind of superpotential that behaves like a single-condensate for
the dilaton S, but as a racetrack for the T and, by extension, also for the U moduli;
and

2. an additional matter F�2 term driven by the cancelation of the anomalous
U.1/A D-term seeds SUSY breaking with successful uplifting.

The constant b is fixed by modular invariance constraints. In general the two
terms in the perturbative superpotential would have different T dependence. We
have found solutions for this case as well. This is possible since the VEV of the �
term in the superpotential vanishes. The second term (proportional to A) represents
the non-perturbative contribution of one gaugino condensate. The constants a D
24�2=ˇ; b2 and p depend on the size of the gauge group, the number of flavors and
the coefficient of the one-loop beta function for the effective N D 2 supersymmetry
of the torus T. For the “mini-landscape” models, this would be either T2 or T3.
Finally, the coefficient of the exponential factor of the dilaton S is taken to be A �p

2 .
This represents the effective hidden sector quark mass term, which in this case is
proportional to a power of the chiral singlet �2. In a more general case, it would be

12The fields entering w0 have string scale mass.
13Note, we have chosen to keep the form of the Kähler potential for this single T modulus with the
factor of 3, so as to maintain the approximate no-scale behavior.
14Note, the constants b; b2 can have either sign. For the case with b; b2 > 0 the superpotential for
T is racetrack-like. However for b; b2 < 0 the scalar potential for T diverges as T goes to zero or
infinity and compactification is guaranteed [509, 513].
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Table 24.2 Input values for the superpotential parameters for three different cases

Case b b2 � R p r A w0
1 �=50 3�=2 33 10 2=5 15p 160 8� 10�15

2 8=125 3�=2 0 5 2=5 15p 30 42� 10�16

3 1=16 29�=20 38 10 2=5 15p 90 6� 10�15

4 ��=120 ��=40 40 64 2=3 1 1=10 �5� 10�15

5 ��=250 ��=100 25 16 1 10=3 7=5 �7� 10�15

Case 2 has a vanishing one loop correction for �2

a polynomial in powers of chiral moduli.15 The exponent p depends in general on
the size of the gauge group, the number of flavors and the power that the field �2
appears in the effective quark mass term.

We have performed a numerical evaluation of the scalar potential with the
following input parameters. We take hidden sector gauge group SU.N/ with
N D 5; Nf D 3 and a D 8�2=N.16 For the other input values we have considered
five different possibilities given in Table 24.2.17 We find that supersymmetry
breaking, moduli stabilization and up-lifting is a direct consequence of adding the
non-perturbative superpotential term.

In our analysis we use the scalar potential V given by

V D eK.
5X

iD1

5X
jD1

�
F˚i F˚j K

�1
i;j � 3jWj2�/C D2A

.S C NS/ C�VCW Œ˚i; ˚ i� (24.41)

where ˚i;j D fS;T; �; �1; �2g and F˚i � @˚iW C .@˚iK /W . The first two terms
are the tree level supergravity potential. The last term is a one loop correction which
affects the vacuum energy and D term contribution.

The one loop Coleman-Weinberg potential is in general given by

�VCW D 1

32�2
Str.M2/�2 C 1

64�2
Str.M4 logŒ

M2

�2
�/ (24.42)

15Holomorphic gauge invariant monomials span the moduli space of supersymmetric vacua. One
such monomial is necessary to cancel the Fayet-Illiopoulos D-term (see Sect. 24.5).
16We have also found solutions for the case with N D 4; Nf D 7 which is closer to the “mini-
landscape” benchmark models. Note, when Nf > N we may still use the same formalism, since we
assume that all the Q; QQs get mass much above the effective QCD scale.
17Note the parameter relation r D 15p in Table 24.2 is derived using U.1/A invariance and the
assumption that no other fields with non-vanishing U.1/A charge enter into the effective mass
matrix for hidden sector quarks. We have also allowed for two cases where this relation is not
satisfied.
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with the mass matrix M given by M D M.˚i/ and � is the relevant cut-off in the
problem. We take � D MS � 1017 GeV.

We have not evaluated the full one loop correction. Instead we use the approxi-
mate formula

�VCW Œ�2; �2� D �2 F22 j�2j2
8�2

�
logŒR.�j�2j2/2�C 3=2

C O.�2/ (24.43)

where F2 D hF�2i is obtained self-consistently and all dimensionful quantities
are expressed in Planck units. This one loop expression results from the �; �1
contributions to the Coleman-Weinberg formula. The term quadratic in the cut-off is
naturally proportional to the number of chiral multiplets in the theory and could be
expected to contribute a small amount to the vacuum energy, of order a few percent
times m23=2M

2
pl. We will discuss this contribution later, after finding the minima of

the potential. Finally, note that the parameters �; R in Table 24.2 might both be
expected to be significantly greater than one when written in Planck units. This is
because the scale of the effective higher dimensional operator with coefficient � in
Eq. (24.39) is most likely set by some value between MPl and Mstring and the cut-off
scale for the one loop calculation (which determines the constant R) is the string
scale and not MPl.

In all cases we find a meta-stable minimum with all (except for two massless
modes) fields massive of O.TeV/ or larger. Supersymmetry is broken at the
minimum with values given in Table 24.3. NoteRe S � 2:2 and Re T ranges between
1.1 and 1.6. The moduli �; �1 are stabilized at their global minima �1 D � D 0

with F� D F�1 D 0 in all cases. The modulus � D Im S is stabilized at � � 1 in the
racetrack cases 1, 2 and 3. This value enforces a relative negative sign between the
two terms dependent on Re T. We plot the scalar potential V in the Re T direction

Table 24.3 The values for field VEVs and soft SUSY breaking parameters at the minimum of the
scalar potential

Case 1 Case 2 Case 3 Case 4 Case 5

hsi 2:2 2:2 2:1 2:1 2:2

hti 1:2 1:1 1:6 1:1 1:1

h�i 1:0 1:0 1:0 0:0 0:0

h�2i 0:08 0:08 0:08 0:03 0:06

FS 2:8� 10�16 1:3 � 10�16 2:7� 10�16 1:1 � 10�16 8:0� 10�17

FT �8:7 � 10�15 �5:1 � 10�15 �5:0� 10�15 6:7 � 10�15 9:1� 10�15

F�2 �9:2 � 10�17 �4:5 � 10�17 �8:9� 10�17 1:3 � 10�15 1:3� 10�15

DA 4:4� 10�31 1:0 � 10�32 5:9� 10�31 �3:8 � 10�31 �4:8� 10�32

DA=m
2
3=2 0:6 0:03 2:7 �0:7 �0:05

V0=.3m
2
3=2/ �0:02 �0:01 �0:02 �0:03 �0:02

m3=2 (TeV) 2:2 1:4 1:1 1:8 2:4

Note: F˚ � @˚W C .@˚K /W
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Fig. 24.1 As ReT ! 1, the potential for bi > 0 mimics a Racetrack, which can be seen from
Eq. (24.39), for example. In the case where bi < 0, however, the potential exhibits a different
asymptotic behavior. As Re T ! 1 the potential diverges, which means that theory is forced to
be compactified [509, 513]. (a) The scalar potential in Case 2 for ReT, with bi > 0. (b) The scalar
potential in Case 4 for ReT, with bi < 0

for case 2 (b; b2 > 0) (Fig. 24.1a) and for case 4 (b; b2 < 0) (Fig. 24.1b). Note the
potential as a function of Re S is qualitatively the same for both cases (Fig. 24.2).

At the meta-stable minimum of the scalar potential we find a vacuum energy
which is slightly negative, i.e. of order .�0:03 to � 0:01/ � 3m23=2M

2
Pl (see

Table 24.3). Note, however, one loop radiative corrections to the vacuum energy are
of order .NT m23=2M

2
S=16�

2/ ,where NT is the total number of chiral multiplets [514]
and we have assumed a cut-off at the string scale MS. With typical values NT �
O.300/ and MS=MPl � 0:1, this can easily lift the vacuum energy the rest of the
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Fig. 24.2 The scalar potential in the ReS direction for Case 2

Fig. 24.3 The one loop Coleman-Weinberg potential (Case 4) for �2. The dashed line represents
the VEV of �2 in the minimum of the full potential

way to give a small positive effective cosmological constant which is thus a meta-
stable local dS minimum. Note that the constants �; R have also been used to adjust
the value of the cosmological constant as well as, and more importantly for LHC
phenomenology, the value of DA (see Fig. 24.3).

The two massless fields can be seen as the result of two U.1/ symmetries; the first
is a U.1/R symmetry and the second is associated with the anomalous U.1/A. The
U.1/R is likely generic (but approximate), since even the “constant” superpotential
term needed to obtain a small cosmological constant necessarily comes with �.T/
moduli dependence. Since we have approximated �.T/ � exp.��T=12/ by the first
term in the series expansion [Eq. (24.17)], the symmetry is exact. However higher
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order terms in the expansion necessarily break the U.1/R symmetry. The U.1/A
symmetry is gauged.

One can express the fields S;T; and �2 in the following basis18:

S � s C i�;

T � t C i	; (24.44)

�2 � '2 e
i�2 :

The transformation properties of the fields �; 	 and �2 under the two U(1)’s are given
by

U.1/R W
�
	 ! 	 C c
� ! � C �b2Cb

a c
;

U.1/A W
�
� ! � � 9

r c
0

� ! � � 9p
a�r c

0 ; (24.45)

where c; c0 are arbitrary constants and for the definition of r see footnote 11. The
corresponding Nambu-Goldstone (NG) bosons are given by

�1NG D a

�b2 C b
� C 	;

�2NG D QN
�

�� C �b2 C b

a
	

�
C 1

p
�2; (24.46)

where QN is a normalization factor. One can then calculate the mass matrix in the
� � 	 � �2 basis and find two zero eigenvalues (as expected) and one non-zero
eigenvalue. The two NG modes, in all cases, can be shown to be linear combinations
of the two eigenvectors of the two massless states. The U.1/A NG boson is eaten by
the U.1/A gauge boson, while the U.1/R pseudo-NG boson remains as an “invisible
axion” [515]. The U.1/R symmetry is non-perturbatively broken (by world-sheet
instantons) at a scale of order

heK =2W e��Ti � m3=2he��Ti � 0:02 m3=2 (24.47)

in Planck units, resulting in an “axion” mass of order 800 GeV (for m3=2 � 40TeV)
and decay constant of order MPL. Such a light pseudo-Nambu-Goldstone boson
might contribute to a cosmological moduli problem. In addition, the heterotic
orbifold models might very well have the standard invisible axion [516–519].

18The fields � and �1 cannot be expressed in polar coordinates as they receive zero VEV, and
cannot be canonically normalized in this basis.
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24.3 SUSY Spectrum

Now that we understand how SUSY is broken, we can calculate the spectrum of
soft masses. The messenger of SUSY breaking is mostly gravity, however, there are
other contributions from gauge and anomaly mediation.

24.3.1 Contributions to the Soft Terms

At tree level, the general soft terms for gravity mediation are given in [520–524].
The models described in this paper contain an additional contribution from the
F-term of a scalar field �2. Following [520, 521, 524], we define

FI � eK =2K I NJ � NWNJ C NW KNJ

: (24.48)

Assuming zero cosmological constant we have the following SUSY breaking soft
terms.

SUGRA Effects

Gaugino Masses

The tree level gaugino masses are given by

M.0/
a D g2a

2
Fn@nfa.S;Ti/: (24.49)

At tree level, the gauge kinetic function in heterotic string theory is linear in the
dilaton superfield S, and only dependent on the T moduli at one loop [Eq. (24.26)].
Note, if FTi  FS then gaugino masses are one loop suppressed.

A Terms

At tree level, the A terms are given by

A.0/IJK D Fn@nK C Fn@n log
YIJK
�I�J�K

; (24.50)

where

YIJK � @3W

@˚ I@˚ J@˚K
(24.51)
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and K is the Kähler potential. Neglecting U dependence, we have

K � ˚I N̊ I �I with �I �
Y
i

�
Ti C NTi

�niI : (24.52)

The �I are the Kähler metrics for the chiral multiplets, ˚I , where the A terms are
expressed in terms of canonically normalized fields. For matter fields we have19

A.0/IJK D � FS

.S C NS/C
X
i

FTi

.Ti C NTi/
.�1CniICniJCniKC.TiC NTi/@TiYIJK

YIJK
/: (24.53)

In general, there are also tree level contributions to A terms proportional to

� F�2
h�2i

@ logYIJK
@ log�2

: (24.54)

These terms may be dominant, but unfortunately they are highly model dependent.
They may give a significant contribution to Ab and A	 , but in fact we find that the
details of the low energy spectrum are not significantly effected.

Scalar Masses

The tree level scalar masses are given by



m.0/I

�2 D m23=2 � Fn NF Nm@n@ Nm log �I C g2G f qIA hDAi �I; (24.55)

where g2G D 1=ReS0 and we have implicitly assumed that the Kähler metric is
diagonal in the matter fields. The factor f re-scales the U.1/A charges qA from
the mini-landscape “benchmark” model 1 [406], so they are consistent with the
charges q0

A in our mini-version of the mini-landscape model. We have q0
A D qA f D

qA 48�2

TrQ ıGS with ıGS D Nf

4�2
[Eq. (24.7)] and TrQ D 296

3
([406, Equation E.5]) such

that Tr.q0/

4�2
D ıGS.

Again neglecting U dependence, the Kähler metric for the matter fields depends
only on the T moduli, and we find



m.0/I

�2 D m23=2 �
X
i

niI
ˇ̌
FTi
ˇ̌2

�
Ti C NTi

2 C g2G f qIA hDAi=.2ReT0/n3I : (24.56)

19Note, with just dilaton and moduli SUSY breaking we can define FS

.SCNS/
D

�p
3m3=2 sin.�/e�i�S ; FTi

.TiCNTi/
D �p

3m3=2 cos.�/e�i�i�i with
P3

iD1 �
2
i D 1. Then A.0/IJK

is independent of the moduli VEVs, only depending on the mixing angles, �; �S; �i; �i.
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� and B� Terms

The � term can come from two different sources:

K � Z.Ti C NTi;Uj C NUj; : : :/HuHd; W � Q�.sI ;Ti;Uj; : : :/HuHd: (24.57)

In the orbifold models, Kähler corrections have not been computed, so the function
Z is a priori unknown. Such a term could contribute to the Giudice-Masiero
mechanism [117]. When both Q� and Z vanish, the SUGRA contribution to the�=B�
terms vanish. On the other hand, in the class of models which we consider, we
know that vacuum configurations exist such that Q� D 0 to a very high order in
singlet fields. Moreover Q� / hW i which vanishes in the supersymmetric limit, but
obtains a value w0 at higher order in powers of chiral singlets. If � is generated
in this way, there is also likely to be a Peccei-Quinn axion [516–519]. Finally,
supergravity effects will also generate a B� term. In addition, if the theory includes
a ZR

4 symmetry, then Q� D 0 to all orders in perturbation theory and can only be
generated by non-perturbative effects of order hW i.

Loop Corrections

Finally, one can consider loop corrections to the tree level expressions in [520, 521,
524]. This was done in [525, 526], where the complete structure of the soft terms
(at one loop) for a generic (heterotic) string model were computed in the effective
supergravity limit. Applying the results of [525, 526] to our models and we find, at
most, around a 10% correction to the tree level results of [520, 521, 524].20

Gauge Mediation

The “mini-landscape” models generically contain vector-like exotics in the spec-
trum. Moreover it was shown that such states were necessary for gauge coupling
unification [439]. The vector-like exotics obtain mass in the supersymmetric limit
by coupling to scalar moduli, thus they may couple to the SUSY breaking field �2.
For example, consider the following light exotics to have couplings linear in the
field �2:

n3 � .3; 1/1=3 C n2 � .1; 2/0 C n1 � .1; 1/�1 C h.c. (24.58)

20In estimating this result, we have assumed that the mass terms of the Pauli-Villars fields do not
depend on the SUSY breaking singlet field �2, and that the modular weights of the Pauli-Villars
fields obey specific properties.
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where the constants ni denote the multiplicity of states and (see Table 7 of [439])

n3 � 4 and n2 � 3 and n1 � 7: (24.59)

The gauge mediated contributions split the gaugino masses by an amount
proportional to the gauge coupling:

M.1/
3 jgmsb D n3

g23
16�2

F�2

h�2i ; (24.60)

M.1/
2 jgmsb D n2

g22
16�2

F�2

h�2i ; (24.61)

M.1/
1 jgmsb D n3 C 3n1

10

g21
16�2

F�2

h�2i : (24.62)

It is interesting to note that this becomes more important as h�2i decreases, F�2

increases, or if there are a large number of exotics present.
The scalar masses in gauge mediation come in at two loops, and receive

corrections proportional to

.mI/
2 jgmsb �

�
1

16�2

�2 �F�2
�2

�2
: (24.63)

Unlike in the case of the gaugino masses, however, the tree level scalar masses are
set by the gravitino mass. Typically

16�2m3=2 >>
F�2
�2
; (24.64)

and the gauge mediation contribution gives about a 10% correction to the scalar
masses, in our case. We will neglect their contributions in the calculation of the soft
masses below.

24.3.2 Hierarchy of F-Terms

Note, in Sect. 24.2, we find (roughly)

FT >> FS & F�2 ; (24.65)

for Cases 1, 2 and 3; and

FT & F�2 >> FS; (24.66)
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Table 24.4 The hierarchy of F terms in the five examples of the single condensate model we
studied

Case 1 Case 2 Case 3 Case 4 Case 5

FS 6:6� 10�16 3:7� 10�16 4:2 � 10�16 2:7� 10�16 2:1� 10�16

FT �2:2� 10�15 �1:2� 10�15 �1:4 � 10�15 1:6 � 10�15 2:2� 10�15

F�2 �1:1� 10�17 �6:5� 10�18 �7:7 � 10�18 1:9 � 10�16 1:8 � 10�16

Note that F˚ is defined in Eq. (24.48). All of the F terms contribute to the soft masses, as they are
all within an order of magnitude

for Cases 4 and 5, where

FI � WI C W KI : (24.67)

When one includes the relevant factors of the Kähler metric, we have (Table 24.4)

FT > FS >> F�2 (24.68)

for Cases 1, 2 and 3; and

FT >> FS � F�2 (24.69)

for Cases 4 and 5. FS is enhanced by a factor of K SNS � .2 C 2/2, while F�2 is
decreased by a factor of K �2 N�2 � .2/�1=2.21 This means that although the singlet
field �2 was a dominant source of SUSY breaking, it is the least important when
computing the soft terms, given the one condensate hidden sector of the simplified
model studied in Sect. 24.2.22

Natural SUSY Breaking

In Chap. 12 we discussed the little hierarchy problem and a possible resolution in
terms of special boundary conditions at the GUT scale. In particular, given the
boundary conditions the SO.10/ boundary conditions with

m10 D p
2m16; A0 D �2m16 (24.70)

there was minimal fine-tuning. In this section we discuss a possible mechanism for
generating such boundary conditions in a string scenario.

21This is due to the assumed modular weight of the field �2.
22In racetrack models FS is suppressed by more than an order of magnitude. In these cases F�2 is
dominant [466].
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Consider Heterotic orbifold models with dilaton/moduli SUSY breaking as
discussed in [524]. With just dilaton and moduli SUSY breaking we have

FS

.S C NS/ D �p
3m3=2 sin.�/e�i�S ;

FTi

.Ti C NTi/
D �p

3m3=2 cos.�/e�i�i�i:

(24.71)

� determines the amount of SUSY breaking of the dilaton sector versus the moduli
sector and �i gives the probability for the SUSY breaking contribution of each
modulus with

P3
iD1 �2

i D 1.23 We have the scalar masses for sparticle I, the trilinear
couplings and the gaugino masses are given by

Ma D p
3m3=2

�
sin �e�i�s

kaReS

Refa

C cos �e�i�i�i

 �
˛ia � kaıi�


.Ti C NTi/ OG2.Ti; NTi/
32�3Refa

!#
;

m2I D m23=2.1 � 3 cos2 �
3X

iD1
niI �

2
i / ; (24.72)

AIJK D �p
3m3=2

 
sin �e�i�s C cos �

.

3X
iD1

e�i�i�iŒ�1C niI C niJ C niK C .Ti C NTi/@i logYIJK �/

!
;

where

OG2.T; NT/ D G2.T/ � 2�

.T C NT/ and G2.T/ D �4� @ log �.T/

@T
:

Note, that for the special case, YIJK � hIJK
Q3

iD1 �.Ti/�Ti as in Eq. (24.26), we have

AIJK D �p
3m3=2

 
sin �e�i�s cos �

C
"

3X
iD1

e�i�i�i.�1C niI C niJ C niK/.1 � �

6
.Ti C NTi/

#!
;

(24.73)

where we used �.T/ � e� �T
12 for T � 1.

23I am assuming that only Kähler moduli, Ti; i D 1; 2; 3, contribute to SUSY breaking, i.e. the
complex structure moduli, Ui; i D 1; 2; 3, have vanishing F terms.
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As a particular example, consider a Z2 ˝Z0
6 orbifold with twist vectors given by

.1=2; 1=2; 0/; .1=6; 2=3; 1=6/ in the three two torii [446]. There are three Kahler
moduli in this example. Then we have

m2I D m23=2.1 � 3.nT1I �2
1 C nT3I �

2
3// (24.74)

where we assumed that �2 D 0.
We now assume that the Higgs 10-plet comes from the bulk on the second two

torus. Thus nT110 D nT310 D 0; nT210 D 1. Hence,

m10 D m3=2 (24.75)

and therefore,

m216 D m210.1 � 3.nT116�2
1 C nT316�

2
3//: (24.76)

If the 16-plet lives in the fifth twisted sector with modular weights, nT116 D nT316 D
1=6; nT216 D 2=3, we have m216 D 1

2
m210 or

m10 D p
2m16: (24.77)

This is our first constraint, that m10 � .mHu C mHd/=2 � p
2m16.

Assuming sin � � 0, we have

A.16 16 10/ � � 2

r
2

3
m16

h
e�i�1�1.1 � �

6
.T1 C NT1//C e�i�3�3.1 � �

6
.T3 C NT3//

i
:

If T1;3 D NT1;3 � 2, then A.16 16 10/ D A0 D �2m16 for e�i�1�1 D
1p
2
e�i� ; e�i�3�3 D 1p

2
eCi� and � D 5�=6. Of course, it would require the

dynamics of stabilizing moduli and SUSY breaking to fix these particular values of
Ti; �i; �i.

24.4 Conclusions

As a candidate theory of all fundamental interactions, string theory should admit at
least one example of a four-dimensional vacuum which contains particle physics and
early universe cosmology consistent with the two standard models. In this context,
the “mini-landscape” of heterotic orbifold constructions [405–407, 413, 414] or the
heterotic orbifold model with ZR

4 symmetry [276] provides us with very promising
four-dimensional perturbative heterotic string vacua. Their low-energy effective
field theory was shown to resemble that of the MSSM, assuming non-zero VEVs
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for certain blowup moduli fields which parametrize resolutions of the orbifold fixed
points along F- and D-flat directions in global supersymmetry.

In this chapter we have dealt with the task of embedding the globally super-
symmetric constructions of the heterotic into supergravity and then stabilizing the
moduli of these compactifications, including their orbifold fixed point blowup mod-
uli. The blowup moduli appear as chiral superfields contained in the twisted sectors
of the orbifolded heterotic string theory. They are singlets under all standard model
gauge groups, but are charged under several unwanted U.1/ gauge symmetries,
including the universal anomalous U.1/A gauge symmetry of the heterotic string.
Note, moduli stabilization of string compactifications is a crucial precondition
for comparing to low energy data, as well as for analyzing any early universe
cosmology, such as inflation, in a given construction.

Section 24.1 served the purpose of reviewing the ingredients and structure of
the heterotic 4D N D 1 supergravity inherited from orbifold compactifications of
the 10D perturbative E8 ˝ E8 heterotic string theory. The general structure of these
compactifications results in:

1. a standard Kähler potential for the bulk volume and complex structure moduli,
as well as the dilaton, together with

2. gaugino condensation in the unbroken sub-group of the hidden E8, and
3. the fact that the non-perturbative (in the world-sheet instanton sense) Yukawa

couplings among the twisted sector singlet fields contain terms explicitly break-
ing the low-energy U.1/R-symmetry.

We have shown in Sect. 24.2 that these three general ingredients, present in all
of the semi-realistic heterotic orbifold constructions, effectively realize a KKLT-
like setup for moduli stabilization. Here, the existence of terms explicitly breaking
the low-energy U.1/R-symmetry at high order in the twisted sector singlet fields is
the source of the effective small term w0 in the superpotential, which behaves like
a constant with respect to the heterotic dilaton [371]. Utilizing this, the presence
of just a single condensing gauge group in the hidden sector (in contrast to the
racetrack setups in the heterotic literature) suffices to stabilize the bulk volume T
(and, by extension, also the bulk complex structure moduli U), as well as the dilaton
S at values hRe Ti � 1:1–1:6 and hRe Si � 2. These are the values suitable
for perturbative gauge coupling unification into SU.5/- and SO.10/-type GUTs
distributed among the orbifold fixed points. Note, we have shown this explicitly for
the case of one T modulus and a dilaton, however, we believe that all bulk moduli
will be stabilized near their self-dual points [509, 513].

At the same time, the near-cancelation of the D-term of the universal anomalous
U.1/A-symmetry stabilizes non-zero VEVs for certain gauge invariant combinations
of twisted sector singlet fields charged under the U.1/A. This feature in turn drives
non-vanishing F-terms for some of the twisted sector singlet fields. Thus, together
with the F-terms of the bulk volume moduli inherited from modular invariance, it
is sufficient to uplift the AdS vacuum to near-vanishing cosmological constant. The
effects from the bulk moduli stabilization and supersymmetry breaking, transmitted
through supergravity, generically suffice to stabilize all of the twisted sector singlet
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fields at non-zero VEVs [453]. On the other hand, in the heterotic construction
with ZR

4 symmetry it was argued that most moduli are, in fact, already stabilized
at the string scale. This, by itself, would justify using a simplified model of SUSY
breaking with only a few moduli.

The structure of the superpotential discussed in this chapter, W � w0e�bT C
�2 e�aS�b2T , behaves like a ‘hybrid KKLT’ with a single-condensate for the dilaton
S, but as a racetrack for the T and, by extension, also for U moduli. An additional
matter F�2 term driven by the cancelation of the anomalous U.1/A D-term seeds
successful up-lifting.

We note the fact that the effective constant term in the superpotential, w0, does
not arise from a flux superpotential akin to the type IIB case. This leaves open (for
the time being) the question of how to eventually fine-tune the vacuum energy to the
10�120-cancelation necessary.

To conclude, we have given a mechanism for moduli stabilization and supersym-
metry breaking for the perturbative heterotic orbifold compactifications. It relies
on the same variety and number of effective ingredients as the KKLT construction
of type IIB flux vacua and thus represents a significant reduction in necessary
complexity, compared to the multi-condensate racetrack setups utilized so far. When
applied to a simplified analog of the heterotic orbifold compactifications, which give
the MSSM at low energies, it leads to fully stabilized 4D heterotic vacua with broken
supersymmetry and a small positive cosmological constant. Moreover, most of the
low energy spectrum could be visible at the LHC.

24.5 The Role of Holomorphic Monomials

Supersymmetry can be broken by either F terms or D terms. In a generic super-
symmetric gauge theory, D D 0 is satisfied only along special directions in moduli
space. These directions are described by holomorphic, gauge invariant monomials
(HIMs) [448, 527, 528]. The moduli space of a general heterotic string model is
significantly more complex than that of our simple models. Not only are there many
more fields in the picture, there are also many more gauge groups.

Consider a theory with gauge symmetry U.1/ ˝ U.1/A, where A stands for
anomalous. The D D 0 constraints are

Da¤A �
X
i

qai j�ij2 D 0: (24.78)

A generic HIM can be written in terms of fields �i with charges q j
i

H Œ�i� D
Y
i

�
ni
i ; ni > 0; (24.79)
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such that

X
i

niq
j
i D 0; 8j ¤ A: (24.80)

The requirement that ni > 0 is a reflection of the holomorphicity of H , while the
requirement that the sum over ni (weighted by the charges) vanishes is a reflection
of the gauge invariance. The general HIM in Eq. (24.79) relates the VEVs of the
fields � as follows:

j�1jp
n1

D j�2jp
n2

D � � � : (24.81)

Given this relationship, one can show that Eq. (24.78) can be satisfied. Notice that no
scale is introduced in Eq. (24.81): the HIMs (in general) only constrain the relative
magnitudes of the � VEVs, and gives no information about their phases or their
absolute magnitudes.

The procedure for dealing with an anomalousU.1/A works the same way. Instead
of Eq. (24.78), one has

DA �
X
i

qAi j�ij2 C � D 0; (24.82)

and we will assume that � > 0. In this case, one needs to find a monomial which
is holomorphic and gauge invariant under all of the  U(1) factors, but which
carries a net negative charge under the anomalous U.1/A [448, 527, 528]. The
situation is different than the case with non-anomalous symmetries, as a mass scale
is introduced into the problem.

In a heterotic string orbifold, the FI term is generated by the mixed gauge-
gravitational anomaly, and is canceled by the Green-Schwarz mechanism, which
forces singlets to get VEVs of order the FI scale (typically � MS). Usually, several
singlets participate in this cancellation, all receiving VEVs of the same order. In
the “mini-landscape” models [406], supersymmetric vacua were obtained, prior to
the consideration of any non-perturbative effects. A holomorphic gauge invariant
monomial was found which is invariant under all other U.1/s but with net charge
under U.1/A opposite to that of the FI term. This composite field necessarily gets a
non-zero VEV to cancel the FI term. Our field �2 in the simple model gives mass
to the vector-like exotics of the hidden sector and thus it also appears in the non-
perturbative superpotential. In a more general heterotic model, �2 would be replaced
by an HIM which also cancels the FI term.



Chapter 25
Other String Constructions

25.1 Smooth Heterotic String Constructions

In the previous chapters we have shown that heterotic orbifold models can provide
the UV completion of orbifold GUT field theories. They provide a “fertile patch”
in the string landscape. They naturally contain local GUTs where complete families
of quarks and leptons reside. This leads to non-trivial Yukawa sectors with light
active neutrinos due to a See-Saw mechanism. The models are consistent with gauge
coupling unification and suppression of proton decay rates. Hundreds of MSSM-like
models have been obtained. In this chapter we focus on finding MSSM-like models
in smooth heterotic string constructions. This requires compactifying the 6 extra
dimensions on a Calabi-Yau three-fold. Many models starting with an E8�E8 gauge
symmetry have been constructed which have the gauge structure and particle content
of the MSSM. In most, if not all, cases this has been accomplished by breaking one
of the E8 groups to either SU.5/ or SO.10/with gauge flux and then breaking further
to the SM gauge group via a Wilson line (for example, see [529, 530]). Hundreds
of MSSM-like models have been found by using Abelian fluxes to break one E8 to
SU.5/ and then a Wilson line to break further to the SM gauge group [531–533].
In addition non-trivial Yukawa matrices are also obtained given by effective higher
dimensional operators proportional to products of SM singlet moduli [532]. Once
again it is clear that to find the MSSM in the string landscape one is greatly assisted
by first building a supersymmetric GUT in the landscape.

25.2 Type II String Constructions

Type II string constructions require a completely different paradigm. Non-abelian
gauge groups are obtained by embedding stacks of D-branes in the Calabi-Yau three-
fold. In the cases most studied the Calabi-Yau three-fold is taken to be an orbifold
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with the SM obtained by taking a stack of 3 D-branes, intersecting a stack of 2
D-branes and finally intersecting several single D-branes. This leads to the gauge
group SU.3/�SU.2/�U.1/n. Quarks and leptons are then found at the intersections
of the D-branes (for a review, see [534, 535]). Supersymmetric GUT models have
also been constructed, but they suffer from several severe problems. The extra U.1/
symmetries prevent a renormalizable Yukawa coupling for the top quark. They also
forbid Majorana masses for right-handed neutrinos. However it has been shown that
non-perturbative instanton effects can still generate these forbidden terms, albeit
somewhat suppressed. A solution around this problem has been found in the context
of F-theory, which is in fact a non-perturbative limit of type II string models.

25.3 F-Theory

SU.5/ GUT F-theory models have been constructed with three families of quarks
and leptons and one pair of Higgs 5 and N5s. These are either defined locally near
the GUT brane, [536–540] or globally on a Calabi-Yau four-fold (see for example,
[541]). In all cases the SU.5/ GUT symmetry is broken to the SM gauge group and
Higgs doublet-triplet splitting is accomplished with non-trivial hypercharge flux.
This typically leads to large threshold corrections to gauge coupling unification
[539, 542]. In addition, R parity, necessary for forbidding dimension 4 baryon and
lepton number violating operators, requires an additional U.1/B�L symmetry [543].
This symmetry should however be spontaneously broken above the weak scale.
Finally, dimension 5 baryon and lepton number violating operators are typically
only suppressed by the string scale, which may not be sufficient.

The first problem of large threshold corrections to gauge coupling unification
can be addressed using Wilson line breaking of the GUT symmetry. The only SU.5/
F-theory model with this solution is given in [544]. This model, however, suffers
from having massless vector-like exotics and four pairs of massless Higgs doublets.
A resolution of the problem of massless vector-like exotics is elusive. A solution to
the problem of dimension 5 baryon and lepton number violating operators could be
resolved with the additional ZR

4 symmetry.

25.4 M-Theory

M-theory is supergravity in 11 dimensions. When some dimensions are compact-
ified on particular compact manifolds the theory has been shown to contain the
spectrum of heterotic, Type I or II string theories [545]. Gauge groups and massless
fermions can be found at singularities of M-theory [546, 547]. There are also
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attempts at obtaining SUSY GUTs with MSSM-like low energy theories from M-
theory, for example, see [548]. Such attempts are especially difficult, since to obtain
an N D 1 SUSY theory in 4D one must compactify the 11 dimensions on a 7D
manifold with G2 holonomy, known as a Joyce manifold [549]. Unfortunately this
is an extremely difficult proposition.
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Epilogue

In this book we have discussed an evolution of SUSY GUT model building. We saw
that 4D SUSY GUTs have many virtues. However there are some problems which
suggest that these models may be difficult to derive from a more fundamental theory,
i.e. string theory.1 We then discussed orbifold GUT field theories which solve two
of the most difficult problems of 4D GUTs, i.e. GUT symmetry breaking and Higgs
doublet-triplet splitting. Finally, we showed how some orbifold GUTs can find an
ultra-violet completion within the context of heterotic string theory.

The flood gates are now wide open. In a “mini-landscape” analysis [406] we
obtained many models with features like the MSSM: SM gauge group with three
families and vector-like exotics which can, in principle, obtain large mass. The
models have an exact R-parity and non-trivial Yukawa matrices for quarks and
leptons. In addition, neutrinos obtain mass via the See-Saw mechanism. We showed
that gauge coupling unification can be accommodated [439]. We were also able
to obtain an MSSM-like model with a ZR

4 symmetry which can resolve the �
and proton decay problems of GUTs [276]. Other MSSM-like models have been
obtained with the heterotic string compactified on a T6=Z12 orbifold [438] or using
free fermionic constructions [550]. Smooth heterotic and F theory constructions
have also been used to obtain MSSM-like models. In all cases, embedding a GUT
symmetry explicitly into the construction allows for the success of finding MSSM-
like models with the correct gauge groups and matter content.

Of course, this is not the end of the story. It is just the beginning. We must still
obtain predictions for the LHC. This requires stabilizing the moduli and breaking
supersymmetry. In fact, these two conditions are not independent, since once SUSY
is broken, the moduli will be stabilized. The size of the extra dimensions, as well
as all gauge and Yukawa couplings are manifestly dependent on the values of these
moduli. The scary fact is that the moduli have to be stabilized at just the right values

1Note, string theories have the possibility of providing a theory of everything since they also
include a consistent theory of quantum gravity.
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to be consistent with low energy phenomenology. String cosmology also has an
immense body of literature (see for example the book by Baumann and McAllister
[245].)

Supersymmetric grand unification is beautiful, but ultimately we want to know
if it is a piece of reality. In order to know this, we must necessarily see the new
supersymmetric particles at the LHC and/or some evidence for proton decay. We
have been waiting for a long time for this discovery, but unfortunately not all
scientific discoveries occur on the timescale of a lifetime.



Chapter 27
Problems

27.1 Problem 1

1. Given the Lagrangian for the Standard Model, the Z boson couples to quarks and
leptons in the Dirac basis proportional to the vector and axial vector coupling
constants, gV and gA [Eq. (2.17)]. Evaluate gV ; gA for up quarks and down
quarks.

2. Write the first term in Eq. (2.20) using Dirac notation.

27.2 Problem 2

1. Consider a chiral superfield˚ which is a gauge singlet and has component fields
given by

˚.y; �/ D �.y/C p
2.�  .y//C .� �/F�.y/ (27.1)

It has a Kähler potential

K D ˚� ˚ (27.2)

and superpotential

W D 1

3
� ˚3 C 1

2
m ˚2: (27.3)
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Calculate the one loop correction to the � mass assuming soft SUSY breaking
terms

� LSUSYbreaking D m2� �
� � C 1

3
A � �3 C 1

2
B m �2 C h:c: (27.4)

i.e. just calculate the quadratic correction to the scalar masses. Note,

� D 1p
2
.�1 C i�2/ (27.5)

where �1; �2 are real scalar fields. All parameters are real.

27.3 Problem 3

This problem is on the O’Raifeartaigh mechanism for spontaneous SUSY breaking
Given the SUSY Lagrangian with chiral superfields fA; B; Cg, Kähler potential

K D A� A C B� B C C� C (27.6)

and superpotential

W D A.B2 C M2/C � C B: (27.7)

The mass parameters M and � are real and take M2 >
�2

2
. Find the ground state of

the theory for arbitrary values of hCi D c0. Define the fields G; L via the unitary
transformation

�
G
L

�
D N�1

� h @W
@A ij0 h @W

@C ij0
�h @W

@C ij�0 h @W
@A ij�0

��
A
C

�
(27.8)

where N D �jh @W
@A ij20 C jh @W

@C ij20
1=2

. Re-write the Lagrangian in terms of the fields
G; L. Calculate the spectrum of states by expanding around the vacuum solutions
with the definitions, hAi D a0, hBi D b0 and hCi D c0. Calculate the supertrace of
the mass squared operator, i.e.

StrM 2 D
X
J

.�1/2J.2J C 1/TrM 2
J : (27.9)

What is the mass of the field G?
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27.4 Problem 4

1. In the lecture, it was argued that a complete Standard Model generation can be
fit in to the N5 C 10.C1/ representations of SU.5/. In general, an element of the
group SU.5/ can be written as

U D ei�
ATA D 1 C i�ATA C O.�2/: (27.10)

The fundamental representation of SU.5/ transforms as follows:

50˛ D U˛
ˇ5ˇ D ˚

ı˛ˇ C i�A.TA/
˛
ˇ C O.�2/

�
5ˇ: (27.11)

(a) Using this, show how the two index anti-symmetric tensor (10˛ˇ) transforms
under infinitesimal gauge transformations.

(b) Given the transformation of the conjugate representation, N5,

N50̨ D U�˛
ˇ

N5ˇ: (27.12)

Define the transformation of the adjoint representation A˛ˇ via

A0˛
ˇ D U˛

� U
�ˇ

ı A
�
ı: (27.13)

Show how A˛ˇ transforms under infinitesimal gauge transformations.
2. In order to break SU(5) to the MSSM, we need to introduce some scalar GUT

Higgs multiplets, which must transform in the adjoint (24) representation, and a
scalar potential. (Why won’t smaller representations work for this job?) Given
that the Higgs scalar ˙ has the following covariant derivative:

D�˙ D @�˙ C ig
h
VA
�TA; ˙

i
; (27.14)

show that the X gauge bosons obtain mass

m2X D 25

4
g2V2: (27.15)

Hint: Take h˙i D V diag.1; 1; 1;�3=2;�3=2/, where V � MG.

27.5 Problem 5

Given the SU.5/ GUT breaking and Higgs doublet-triplet splitting sectors in the
notes

W D �

3
Tr.˙/3 � M

2
Tr.˙/2 C NH .�0 ˙ � M0/ H; (27.16)
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calculate the spectrum of massive states (assuming h˙i breaks SU.5/ ! SU.3/ �
SU.2/ � U.1/Y) and show that only the states in the MSSM are present in the
low energy theory below the GUT scale of order M=�. Note, first show that the
symmetry breaking VEV preserves supersymmetry. Therefore the massive spectrum
must form a massive N = 1 supermultiplet. For the gauge sector the massive gauge
super multiplet includes a massive vector boson, a real scalar and a Dirac fermion
(all transforming in the same representation under the unbroken gauge symmetry).
A massive chiral super multiplet includes two complex scalar fields and a Dirac
fermion (again, all transforming in the same representation under the unbroken
gauge symmetry).

27.6 Problem 6

Given the one loop RG running of the three gauge couplings, ˛i; i D 1; 2; 3, in the
MSSM and the low energy boundary conditions considered in the text, find ˛G and
MG for Nfam D 4; N.HuCHd/ D 1 and for Nfam D 3; N.HuCHd/ D 2. Are there any
problems with either of these choices?

27.7 Problem 7

In Fig. 27.1 we have the multiplication table for the quaternionic group. The group
has 8 elements and 5 irreducible representations, i.e. 1 doublet and 4 singlets.

e

e

e

e e

e

a1

a1

ea1

ea1

a1

e a1

e a1

a1

a1

a4 a4 a5

a4 a5

a5

a6 a6

a6

a6

a6

a7

a7

a6

a7

a6 a7

a6 a7

a7

a7

a7 a7 a6

a7 a6

a5 a4

a5 a4

a4

a4

a5

a4 a5

a4

a4

a5

a5

a5

a2

a2 a3

a2 a3

a3 a2

a2 a3

a2 a3

a2 a3

a3 a3 a2

a3 a2

a3 a2

a1

Fig. 27.1 The multiplication table for the quaternionic group
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1. Show that the matrices in Eq. (27.17) satisfy the quaternionic multiplication
rules.

De D
�
1 0

0 1

�
IDa1 D

��1 0

0 �1
�

I (27.17)

Da2 D
�
i 0
0 �i

�
IDa3 D

��i 0
0 i

�
I

Da4 D
�
0 1

�1 0
�

IDa5 D
�
0 �1
1 0

�
I

Da6 D
�
0 i
i 0

�
IDa7 D

�
0 �i
�i 0

�

2. Given the two doublets
�!
X ;

�!
Y with components defined by

�!
X D

�
x1
x2

�
(27.18)

and

�!
Y D

�
y1
y2

�
; (27.19)

show that the inner product

�!
X � �!

Y D x1 y2 � x2 y1 (27.20)

is invariant under quaternionic transformations.

27.8 Problem 8

U.1/ D terms due to U.1/ gauge symmetries broken at a GUT scale have been used
in the literature to provide soft SUSY breaking mass terms at the weak scale. Such
D terms have been used to split sparticle masses, for example, the U.1/X D term
in SO.10/ models when SO.10/ is broken to SU.5/ � U.1/X was used to split the
Hu and Hd soft masses. In addition, U.1/ D terms coming from non-Abelian flavor
symmetries are argued to be a problem for flavor physics even when the U.1/ was
spontaneously broken at a scale much above the weak scale. For this reason it has
been suggested that non-Abelian discrete symmetries could be used to avoid this D
term problem. In this problem we show that if the gauge symmetry is spontaneously
broken at a scale, M, which is much larger than the soft SUSY breaking scale, m,
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then the U.1/ quartic term decouples from low energy physics. However, the U.1/
D terms remains in the effective low energy theory.

You are given a supersymmetric U.1/ gauge theory with heavy charged chiral
superfields �C; �� with charge ˙1 and gauge coupling, g � 1. In addition there
are also massless chiral superfields, �i; i D 1; � � � ;N, with U.1/ charge, qi. You
also are given a singlet chiral superfield, X. The superpotential for the theory is
W D X.�C �� � M2/. We thus have a scalar potential given by

V D j�C �� � M2j2 C jXj2.j�Cj2 C j��j2/

C g2

2
.j�Cj2 � j��j2 C

X
i

qij�ij2/2 C m2Cj�Cj2 C m2�j��j2 (27.21)

where the mass parameter, M  mC; m�, and m˙ are soft SUSY breaking masses.

We take m2 D m2
C

Cm2
�

2
and ı D m2

C
�m2

�

m2
� 1.

Calculate the U.1/ quartic term and D-term in the low energy theory for energies
much below M.

27.9 Problem 9

Given the Lagrangian for a real scalar field, �,

L D 1

2
g�� @�� @�� � V.�/ (27.22)

where g�� is the metric with signature .C � ��/ and V.�/ is the scalar potential.
The stress-energy tensor for the scalar field, T�� , is given by

T�� D @�� @�� � g�� L : (27.23)

We identify the energy density and pressure of the field by

T00 D �; Tii D p�: (27.24)

Assume

V.�/ D 1

2
m2 �2 (27.25)

and, in the early universe, the field can be described by a coherent state with central
value �.t/, independent of the spatial coordinate, �!x , and initial value, �i D �.0/.
Write down the equations of motion of the field, �.t/, in the Robertson-Walker
background. Assume that the total energy of the universe has two pieces, a radiation
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component with r D � T4 and � . Determine the solution of the equations of
motion for r  �i and also in the opposite limit, when r 
 �i . The initial
conditions for the � field are �.0/ D �i D m D 100GeV and P�.0/ D 0. Describe
the solution in the two limits in words and plot the solution for �.t/.

27.10 Problem 10

In this homework assignment :

(a) Prove Eq. (14.36) and then use it to prove Eqs. (14.37)–(14.40).
(b) Then given Eqs. (14.41), (14.42) show that the mode expansions are given by

Eqs. (14.43)–(14.46).
(c) Finally, prove Eq. (14.48).

27.11 Problem 11

(a) Prove Eq. (14.79) in the text.
(b) Following [301], prove Eq. (14.105).

27.12 Problem 12

Evaluate the one-loop renormalization of the gauge coupling constants in the
orbifold GUT theory with the sum over all KK modes.

27.13 Problem 13

Consider the Z6-II orbifold compactification of the heterotic E8 �E8 string with the
twist vector

v6 D 1

6
.1; 2;�3; 0/ (27.26)

acting on an G2 � SU.3/ � SO.4/ torus. Consider the gauge shift V , which allows
for a local SO(10), given by

V6 D 1

6
.22200000/.11000000/ : (27.27)
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Show that with this gauge shift the left-moving momenta P which satisfy

P � V6 D 0 mod 1 ; P2 D 2 ; P 2 � 8 (27.28)

are roots of SO.10/ (up to extra group factors). In fact, this defines the “local” gauge
symmetry in the T1 sector, for states residing at the origin in the G2 and SU.3/ tori
and at the two fixed points in the SO.4/ torus which are unaffected by the W2 Wilson
line along the e6 direction (see Fig. 20.6).1

Show that the massless states of the first twisted sector are guaranteed to contain
16-plets of SO.10/ at the fixed points with SO.10/ symmetry.

1We assume that there are only two Wilson lines, W3 in the SU.3/ torus and W2 in the SO.4/ torus.
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Solutions to Problems

28.1 Solution to Problem 1

1. We have

guV D 1

2
� 4

3
sin2 �W ; guA D 1

2
and (28.1)

gdV D �1
2

C 2

3
sin2 �W ; gdA D �1

2
: (28.2)

2.

� LYukawa � �˛ˇ N ei Y
ij
e PL  

˛
lj H

ˇ
d C h:c: (28.3)

where  l D .
 �
 e
/.

28.2 Solution to Problem 2

The scalar potential is calculated from the superpotential. We have

V D .m2Cm2�/ j�j2C�2 j�j4C�m .�C��/ j�j2C�

3
A .�3C��3/CB m

2
.�2C��2/:

(28.4)
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The scalar mass terms are given by the quadratic terms in V. We have

Vmass � 1

2
.m2 C m2� C B m/ �21 C 1

2
.m2 C m2� � B m/ �22 D 1

2
m21 �

2
1 C 1

2
m22 �

2
2 :

(28.5)

The higher order terms in V determine the scalar self interactions. We have

Vint D �2

4
.�21 C �22/

2 C � mp
2
�1 .�

2
1 C �22/C � A

3
p
2
.�31 � 3 �1 �22/: (28.6)

There is also a Yukawa interaction given by

L D  � i N�� @�  � 1

2
Œ.m C 2 � �/.  /C h:c:�

D 1

2
Œ N
 i�� @� 
 � m N
 
� � �p

2
.�1 N
 
 � i �2 N
 �5 
/ (28.7)

using .  / C h:c: D N
 
 and .  / � h:c: D � N
 �5 
 with 
 D
�

 

i�2  �
�

D
�
 ˛
N P̨
�

. In Fig. 28.1 we show the Feynman diagrams contributing to the quadratic

divergent corrections to the �1 scalar mass. The diagrams for �2 are the same with
slightly different vertices. All other Feynman diagrams have two scalars in the loop
and are thus only log divergent.

Let’s first consider the Feynman propagator for Majorana fermions. The kinetic
term in the Lagrangian is given by the first two terms in Eq. (28.7). We have

1

2
. N P̨  ˇ/

 N�� P̨˛p� �mı P̨ P̌
�mıˇ

˛ ��ˇ P̌p�

!  
 ˛
N P̌

!
: (28.8)

This gives us the propagators in momentum space in terms of Weyl spinors, ˛; N P̨

h ˛ N P̌i
0

D i��˛ P̌p�

p2�m2Ci�
(28.9)

h ˛  ˇi0 D imı˛
ˇ

p2�m2Ci�
: (28.10)

In terms of the 4 component spinor, 
 , we have

h
 
��0i0 D
 

h ˛ ˇi0 h ˛ N P̌i
0

h N P̨ ˇi0 h N P̨ N P̌i
0

!
D 1

. p2 � m2 C i�/

 
imı˛

ˇ i��
˛ P̌p�

i N�� P̨ˇp� imı P̨ P̌

!

(28.11)
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Fig. 28.1 Feynman diagrams contributing to quadratic divergent corrections to the �1 scalar mass

or

h
 N
 i0 D i
��p� C m

. p2 � m2 C i�/
: (28.12)

For Majorana 4 component spinors we also have

h
 
 Ti0 D h
 N
 i0 C�1 D i .�
�p�Cm/C�1

. p2�m2Ci�/
(28.13)

h N
 T N
 i0 D C�1 h
 N
 i0 D i C
�1.��p�Cm/
. p2�m2Ci�/

where C D
��i�2 0

0 i�2

�
is the charge conjugation matrix and we used

C�1 
 D N
 T .
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The Feynman integrals for the three loops (in terms of 4 component Majorana
spinors) are given by

�m21 � 4Š

2

�2

4

Z
d4p

.2�/4
1

p2 � m21 C i�
C 2

�2

2

Z
d4p

.2�/4
1

p2 � m22 C i�
(28.14)

� �2

2

Z
d4p

.2�/4
ŒTrf .��p� C m/

. p2 � m2 C i�/

.��p� C m/

. p2 � m2 C i�/
g

�TrfC
�1.��p� C m/

. p2 � m2 C i�/

.��p� C m/C�1

. p2 � m2 C i�/
g�:

Note the combinatoric factors multiplying each graph. Adding the three contri-
butions we see that the quadratic divergent piece of each diagram cancels in the
sum. The calculation of the fermion loop could also have been done in terms of 2
component Weyl spinors.

28.3 Solution to Problem 3

There is no SUSY vacuum solution to the F term equations since FA D 0 and
FC D 0 cannot be satisfied simultaneously. The solution to FB D 0 gives 2 a0 b0 C
� c0 D 0 where hAi D a0, etc. Thus we have a flat direction in the scalar potential
with c0

a0
D � 2 b0

�
. The scalar potential is now given by

V.A; B; C/ D �2 jBj2 C jB2 C M2j2: (28.15)

We now look for the minimum of the scalar potential. We have

@V

@B� j0 D �2 b0 C 2.b20 C M2/b�
0 D 0;

@V

@B
j0 D �2 b�

0 C 2.b�
0
2 C M2/b0 D 0:

(28.16)

Multiplying the first equation by b0, we have

.�2 C 2jb0j2/ b20 C 2M2 jb0j2 D 0: (28.17)

Thus b20 is real. Take b20 D ˙jb0j2. We have

˙ .�2 C 2jb0j2/C 2M2 D 0 (28.18)

implies

jb0j2 D �M2 � �2=2 � 0: (28.19)
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Let M2 >
�2

2
, then take the solution b20 D �jb0j2. We then find

jb0j D
r
M2 � �2

2
(28.20)

and

b0 D ˙ijb0j (28.21)

which gives

b20 C M2 D �2

2
: (28.22)

We therefore find the vacuum energy at the minimum given by

V.a0; b0; c0/ D �2 .M2 � �2

2
/C �4

4
: (28.23)

Before calculating the spectrum, let’s define the rotated fields

G D .h@W
@A

i A C h@W
@C

i C/ N�1 (28.24)

L D .�h@W
@C

i� A C h@W
@A

i� C/ N�1 (28.25)

with

N D .jh@W
@A

ij2 C jh@W
@C

ij2/1=2 � V.a0; b0; c0/
1=2: (28.26)

If we calculate the vacuum expectation value of G we find

hGi D .h@W
@A

i .a0 � �2h@W
@A

i�/C h@W
@C

i .c0 � �2h@W
@C

i�// N�1 (28.27)

D .a0 h@W
@A

i C c0 h@W
@C

i/N�1 � N �2

D ..b20 C M2/ a0 C �b0 c0/N
�1 � N �2

D a0.2M
2 � �2

2
/N�1 � N �2: (28.28)



384 28 Solutions to Problems

Similarly, if we calculate the VEV of L we find

hLi D .�h@W
@C

i� .a0 C �2h@W
@A

i�/C h@W
@A

i� .c0 C �2h@W
@C

i�// N�1 (28.29)

D .�a0 h@W
@C

i� C c0 h@W
@A

i�/N�1

D ��b�
0 a0 C �2

2
c0 D �a0�.b

�
0 C b0/ D 0: (28.30)

Let’s now re-write the Lagrangian in terms of the field G D g0 C �2N; L and
B D B0 C b0.

Since the transformation from A; C to G; L is a unitary transformation the Kähler
potential becomes

K D G� G C L� L C B0� B0 C b�
0B

0 C b0B
0�: (28.31)

and the superpotential becomes

W D A.B02 C 2b0B0 C b20 C M2/C �C.B0 C b0/ (28.32)

D A.B02 C 2b0B0 C h @W
@A i/C C.�B0 C h @W

@C i/: (28.33)

Using

A D .h@W
@A

i� G � h@W
@C

i L/ N�1 (28.34)

C D .h@W
@C

i� G C h@W
@A

i L/ N�1 (28.35)

we find

W D .h@W
@A

i� G � h@W
@C

i L/ N�1.B02 C 2b0B
0 C h@W

@A
i/ (28.36)

C.h@W
@C

i� G C h@W
@A

i L/ N�1.�B0 C h@W
@C

i/

D GN�1.h@W
@A

i�.B02 C 2b0B
0 C h@W

@A
i/C h@W

@C
i�.�B0 C h@W

@C
i//

CLN�1.�h@W
@C

i.B02 C 2b0B
0 C h@W

@A
i/C h@W

@A
i.�B0 C h@W

@C
i/:

D GN C GN�1.h@W
@A

i�.B02 C 2b0B
0/C h@W

@C
i�.�B0// (28.37)

CLN�1.�h@W
@C

i.B02 C 2b0B
0/C h@W

@A
i�B0/:
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D GN C GN�1.
�2

2
B02/ (28.38)

CLN�1.�� b0B
02 C .

3�3

2
� 2�M2/B0/

W � GN C � .g0 C �2N/ B02 C �0 LB02 C m L B0: (28.39)

Note

• jh @W
@G ij2 D N2 D V.a0; b0; c0/.

• NO G B0 or G L terms.
• Therefore G is massless and contains the Goldstino.
• B0 states have SUSY breaking mass due to coupling to G.

The fermion mass matrix is given by

W � m L B0 ) 1

2

�
B0 L


m1=2

�
B0
L

�
(28.40)

where

m1=2 D
�
2� g0 m
m 0

�
: (28.41)

Scalar mass matrix is given by

1

2

�
B0� B0 L� L


m20

0
BB@

B0
B0�

L
L�

1
CCA (28.42)

where

m20 D

0
BB@

4�2 g20 C m2 �m2 2� g0 m 0

�m2 4�2 g20 C m2 0 2� g0 m
2� g0 m 0 m2 0

0 2� g0 m 0 m2

1
CCA : (28.43)

We can now evaluate the supertrace and we find StrM 2 D 0.
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28.4 Solution to Problem 4

28.5 SU.5/ Representations

First, we calculate how the N5 transforms. We could do this by taking the totally
antisymmetric combination of four 5s, or we can simply observe that

.5˛/� � �N5
˛
: (28.44)

Then

�
50� D .U5/� D .U/�

�N5 (28.45)

Finally, note that

.U/� D �
1 C i!AT

A C � � � � D 1 � i!A
�
TA
T C � � � : (28.46)

So the generators of the anti-fundamental representation are � �TA
T

.
The index structure of a 10 is given by

10˛ˇ D 1p
2

h
5˛50ˇ � 5ˇ50˛

i
: (28.47)

Now, given that the transformation law of the 5 is

50˛ D U˛
ˇ5ˇ D ˚

ı˛ˇ C i!A.TA/
˛
ˇ C O.!2/

�
5ˇ; (28.48)

we find :

10˛ˇ ! 100˛ˇ D �
ı˛� C i!A.TA/

˛
�

 �
ıˇı C i!A.TA/

ˇ
ı


10�ı;

D
n
ı˛�ı

ˇ
ı C i!A

�
ı˛� .TA/

ˇ
ı C ıˇı.TA/

˛
�

� o
10�ı: (28.49)

Therefore

100˛ˇ �
n
ı˛�ı

ˇ
ı C i!AT˛ˇA�ı

o
10�ı (28.50)

where

T˛ˇA�� � �
ı˛� .TA/

ˇ
ı C ıˇı.TA/

˛
�

�
(28.51)

are the generators acting on the 10.
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Now evaluate the generators on the adjoint representation. We have the field ˙
in the adjoint representation given by a traceless matrix

˙˛
ˇ D

X
A

˙ATA
˛
ˇ: (28.52)

Then under an SU.5/ transformation we have

˙ 0˛
ˇ D U˛

� U
�ˇ

ı ˙
�
ı D U˛

� ˙
�
ı U

�ı
ˇ: (28.53)

Under an infinitesimal transformation we have

˙ 0˛
ˇ D �

1 C i!AT
A C � � �  ˙�

ı

�
1 � i!A

�
TA
C � � �  D ˙˛

ˇ C iTA
˛�
ˇı ˙

�
ı

(28.54)

with

TA
˛�
ˇı ˙

�
ı D ŒTA; ˙�

˛
ˇ: (28.55)

28.6 Higgsing SU.5/

The adjoint representation is the smallest representation which will work for
higgsing SU.5/, however, larger representations can be used (and MUST be used
to get realistic models). The reason that we need at least a 24 is easy to see—once
we assigned fermions to the 10 and N5, we defined a charge operator. Specifically,
there is no hypercharge neutral component of the N5 or the 10, so giving any of the
components of those representations a VEV breaks hypercharge.

To calculate the gauge boson masses, we need to write down a Lagrangian that
tells us how they interact with the Higgs:

Lhiggs D Tr
h�
D�˙

�
D�˙

i
C V.˙�˙/: (28.56)

Since we’re only really interested in the mass terms, we can see that

Lhiggs D stuff C g2AA
�A

�B Tr
n
ŒTA; ˙� : .ŒTB; ˙�/

�
o
;

D stuff � g2AA
�A

�B Tr fŒTA; ˙� : ŒTB; ˙�g : (28.57)

where we made the last replacement because ˙� D ˙;T�B D TB. In order to
calculate the trace, we’ll need to know the form of at least one of the SU.5/
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generators. Luckily, two of them are listed in the notes, Eq. (5.19). We’ll take

TA D 1

2

0
BBBBB@

1 0

0 0

0 0

1 0 0

0 0 0

1
CCCCCA
; (28.58)

where the factor of 1
2

is to ensure that the generators are properly normalized. Then

.˙:TA � TA:˙/
2 D �V2 diag.

25

16
; 0; 0;

25

16
; 0/: (28.59)

This means

� g2AA
�A

�B Tr fŒTA; ˙� : ŒTB; ˙�g D 25

8
g2V2ıABA

A
�A

�B; (28.60)

which, for a canonically normalized gauge field, means that we have mass

m2A D 25

4
g2V2: (28.61)

Flipped SU.5/

The easiest way to see that the gauge group of the flipped SU.5/ “GUT” (or ASU.5/,
for short) is to check the decomposition of the GUT representations under the SM
gauge group. In ASU.5/ we interchange the fields Nu ! Nd and N� ! Ne. Slansky tells us

N5 ! .N3; 1/2=3 C .1; 2/�1: (28.62)

So it seems pretty natural to just identify the U(1) generator which lives in SU.5/
with the hypercharge generator. In the case of ASU.5/, we can no longer make this
identification, because the hypercharge of Nu is not 2/3. This means that the actual
hypercharge must be (at least) a linear combination of two U(1) generators—one of
which is embedded in SU.5/ and one of which is not.

To calculate the definition of hypercharge in terms of the U.1/X and U.1/QY , we
first note that the standard definition of electric charge is Q D T3 C Y=2. The new
definition, in terms of X and QY quantum numbers is

Q D T3 C a QY C bX: (28.63)
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Now we can calculate the charge of the electron:

Q D �1
2

C a.�1/C b.�3/ D �1 ) a C 3b D 1

2
; (28.64)

and of the Nu:

Q D 0C a

�
2

3

�
C b.�3/ D �2

3
) 2a � 9b D �2: (28.65)

This gives us

) Q D T3 � 1

10
QY C 1

5
X: (28.66)

Comparing to the familiar definition of hypercharge, we find

Y D �1
5

QY C 2

5
X: (28.67)

Once we have this definition of hypercharge, it’s relatively easy to assign the
fermions to the 10. So, for example, we know that all of the components of the 10
have X D 1. The q states still live in the same place (as expected), because (for the
up quark, for example)

Q D 1

2
� 1

10

1

3
C 1

5
.C1/ D 2

3
: (28.68)

The Nd quarks “flip” places with the Nu quarks:

Q D 0 � 1

10

�
�4
3

�
C 1

5
.C1/ D 1

3
: (28.69)

The singlet has

Q D 0 � 1

10
.C2/C 1

5
.C1/ D 0: (28.70)

This means that the ASU.5/model requires a right handed neutrino! (This is not really
surprising, if you consider that the ASU.5/ is just another embedding of SU.5/ into
SO.10/.) The only state that is left is the anti-electron, Ne, which lives in the singlet,
which must have X D 5:

Q D 0 � 1

10
.0/C 1

5
.C5/ D 1: (28.71)
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Finally, we can look at symmetry breaking in this model. In fact, we don’t need
the adjoint representation any more—the reason is easy to see. Because the positron
and the right handed neutrino have “flipped” places in the 10 and the 1, the 10 now
has a hypercharge-neutral component, which can get a VEV. This means that we
can take ˙ D 10 with

h˙i D V

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 �1 0

1
CCCCCA

(28.72)

This model suffers from the absence of a prediction for gauge coupling unification
and also some of the fermion mass predictions which plague minimal SU.5/.

28.7 Solution to Problem 5

The superpotential for SUSY SU.5/ is given by

W D �

3
Tr.˙3/ � M

2
Tr.˙2/C NH .�0 ˙ � M0/ H: (28.73)

The vacuum solution is given by ˙0 D
p
60
�

MT24 and M0 D 3�0

�
M. Given the

definitions of

T24 D
r
3

5

0
BBBBB@

�1=3 0 0

0 �1=3 0

0 0 �1=3
0

0
1=2 0

0 1=2

1
CCCCCA

(28.74)

and defining T9; T10 by the equations

T9 D 1

2

0
BBBBB@

0

1 0

0 0

0 0

1 0 0

0 0 0
0

1
CCCCCA
; T10 D 1

2

0
BBBBB@

0

�i 0
0 0

0 0

i 0 0
0 0 0

0

1
CCCCCA

(28.75)
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we can derive the useful identities

ŒT24;T9� D � i

2

r
5

3
T10; ŒT24;T10� D i

2

r
5

3
T9 (28.76)

fT24;T9g D 1

2
p
15

T9; fT24;T10g D 1

2
p
15

T10 (28.77)

with similar relations for TA; A D 11 � 20.
The scalar potential is given by

V D j@W
@˙

j2 C j@W
@H

j2 C j@W
@ NH j2 C 1

2

X
A

D2A (28.78)

where DA D g5Tr.˙� ŒTA; ˙�/. The field ˙ can be written in terms of the 24
normalized complex scalar fields ˙A via the equation

˙ D p
2
X
A

TA ˙A: (28.79)

Let us first show that DA.˙0/ D 0. We have

DAj˙0 D g5Tr.˙
�
0 ŒTA; ˙0�/ D g5

60

�2
M2Tr.T24ŒTA;T24�/: (28.80)

BUT

ŒTA;T24� D 0; for A D 1; � � � ; 8I 21; 22; 23I 24 (28.81)

and

Tr.T24TA/ D 0 for A D 9 � 20: (28.82)

Therefore DAj˙0 D 0.
To calculate the scalar masses we need the quadratic terms in the scalar potential

after shifting the ˙ field by ˙ D ˙0 C Q̇ . Let’s first consider the mass terms
coming from the F terms scalar potential. We have

V2. Q̇ / D Tr..
@W

@˙
/�..

@W

@˙
/ (28.83)

D TrfŒ�.f˙0; Q̇ g� � .Trf˙0; Q̇ g/� I

5
/� M Q̇ ��

Œ�.f˙0; Q̇ g � .Trf˙0; Q̇ g/ I
5
/ � M Q̇ �g
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D M2Trf.p60ŒfT24; Q̇ g� � TrfT24; Q̇ g� I

5
� � Q̇ �/

.
p
60ŒfT24; Q̇ g � TrfT24; Q̇ g I

5
� � Q̇ /g:

Using the identity

TrfT24; Q̇ g D p
2
X
A

TrfT24;TAg˙A D p
2˙24 (28.84)

we find

V2. Q̇ / D 2M2TrfŒ�5
X

AD1;��� ;8
TA˙

�
A C 5

X
AD21;22;23

TA˙
�
A C T24˙

�
24�

�Œ�5
X

AD1;��� ;8
TA˙A C 5

X
AD21;22;23

TA˙A C T24˙24�g (28.85)

D 25M2
X

AD1;��� ;8
˙
�
A˙A C 25M2

X
AD21;22;23

˙
�
A˙A C M2 ˙

�
24˙24:

Thus we have m8 D 5M D m3 for the color octet and SU.2/ triplet and m1 D M for
the SM singlet field.

Note, the fields˙A; A D 9�20 are, at the moment, massless. Now consider the
D term potential. The quadratic mass terms are given by

V0

2 D g25
2

X
A

ŒTr..˙� �˙/ŒTA; ˙0��
2 D g2560M

2

2�2

X
A

ŒTr..˙� �˙/ŒTA;T24��
2 (28.86)

D g2560M
2

�2

X
A

.˙
�
B �˙B/Tr.TBŒTA;T24�/.˙

�
C �˙C/Tr.TCŒTA;T24�/:

Defining ˙A D .˙Ar C i˙Ai/=
p
2 we have ˙�

A � ˙A D �p
2i˙Ai. Using the

commutation identities, Eq. (28.76), we obtain

V 0
2 D 1

2
m2X

X
AD9�20

˙2
Ai (28.87)

with m2X D 25g25
M2

�2
. mX is identical to the mass for the massive SU.5/ gauge bosons.

In Problem 3 we took ˙0 D Vdiag.1; 1; 1;�3=2;�3=2/. This is identical to the
symmetry breaking VEV here if we take V D � 2M

�
.

The color triplet Higgs scalars have mass mT D m NT D 5�
0

�
M which is equal to

the Dirac mass of the color triplet Higgsinos. Finally, the fermions in Q̇ obtain mass
from the superpotential and also from the gaugino- Q̇ couplings. The gauginos mix
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with the Q̇A; A D 9 � 20 to form Dirac gauginos with mass equal to mX . On the
other hand the rest of the Q̇ fermions obtain mass from the superpotential given by

@2W

@˙A@˙B
j˙0 D 2�Tr.TAfTB; ˙0g/� MıAB (28.88)

D MŒ2
p
60Tr.TAfTB;T24g/� ıAB�

D MŒ�5ıAB .for A;B D 1; � � � ; 8/C 5ıAB .for A;B D 21; 22; 23/

CıAB .for A;B D 24/�:

Thus again we have m8 D m3 D 5M and m1 D M.

28.8 Solution to Problem 6

�
3

5
� 8

5
sin2 �W.MZ/

�
˛EM.MZ/

�1 D .
b2 � b1
2�

/ ln.
MG

MZ
/ (28.89)

which we use to solve for MG. Then we use

˛�1
G D sin2 �W.MZ/ ˛EM.MZ/

�1 C b2
2�

ln.
MG

MZ
/ (28.90)

to solve for ˛G. We can then predict the value for the strong coupling using

˛3.MZ/
�1 D ˛�1

G � b3
2�

ln.
MG

MZ
/: (28.91)

We use sin2 �W D 0:23; ˛�1
EM D 128; MZ D 91:2 GeV:

For SUSY we have

bSUSY D .�2Nfam � 3

5
N.HuCHd/; 6 � 2Nfam � N.HuCHd/; 9 � 2Nfam/ (28.92)

where N.HuCHd/ is the number of pairs of Higgs doublets.
Case 1) Nfam D 4; N.HuCHd/ D 1I bSUSY D .�43=5;�3; 1/We find

MG D 2:6 � 1016 GeV; ˛�1
G D 13:5; ˛s.MZ/ D 0:122: (28.93)

Case 2) Nfam D 3; N.HuCHd/ D 2I bSUSY D .�36=5;�2; 3/We find

MG D 3:6 � 1017 GeV; ˛�1
G D 17:9; ˛s.MZ/ D 0:77: (28.94)
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28.9 Solution to Problem 7

The quaternionic group has five conjugacy classes given by feg; fa1g; fa2; a3g;
fa4; a5g; fa6; a7g. You should have found that the isomorphism between the group
elements is given by, ai $ Dai for all i and e $ De.

To prove that
�!
X ��!Y D x1 y2�x2 y1 is invariant, you just need to take one element

Dai from each conjugacy class and given the transformed doublet
�!
X 0 D

�
x0
1

x0
2

�
D

Dai

�
x1
x2

�
D Dai

�!
X and similarly for

�!
Y , show that

�!
X 0 � �!

Y 0 D �!
X � �!

Y .

28.10 Solution to Problem 8

First find the extremum of the scalar potential. Evaluating the term

���
@V

@�C
C ��C

@V

@��
D 0 (28.95)

we find

�C �� D ��C ��� D M2.j�Cj2 C j��j2/
.j�Cj2 C j��j2 C m2C C m2�/

: (28.96)

Evaluating the term

�C
@V

@�C
� ��

@V

@��
D 0 (28.97)

we find

.j�Cj2 � j��j2/ ' �ı m
2

2g2
: (28.98)

At the scale M the spectrum is approximately supersymmetric with small correc-
tions of order m=M 
 1. In this note, we neglect corrections of order m=M. Shifting
the scalar fields by their expectation values we have

�˙ D h�˙i C � 0̇ : (28.99)
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We take

h�Ci � h�Ci � M (28.100)

real. The VEVs spontaneously break the U.1/ gauge symmetry at the scale, M.
Due to the term in the scalar potential

V � j�C�� � M2j2 (28.101)

the field
�0

C
C�0

�p
2

obtains mass,
p
2M. The orthogonal linear combination,

�0

C
��0

�p
2

,
remains massless. Its imaginary component is the goldstone boson of spontaneous

U.1/ breaking and is eaten by the U.1/ gauge bosons. Its real part,


�Cr���rp

2

�
,

obtains mass from the D-term.
Consider the term in the scalar potential due to the U.1/ D-term. We have

VD ' g2

2

 
�ı m

2

2g2
C 2h�Ci

�
�Cr � ��rp

2

�
C
X
i

qij�ij2
!2
: (28.102)

Note, contained in this term there exists a tadpole term for the field


�Cr���rp

2

�
.

However there cannot be such a tadpole term at the extremum of the potential. We
now show that this tadpole term is cancelled exactly from a similar term coming
from the soft scalar mass terms. We have

m2Cj�Cj2 C m2�j��j2 D m2.j�Cj2 C j��j2/C ım2

2
.j�Cj2 � j��j2/: (28.103)

Only the second term gives a tadpole for the field


�Cr���rp

2

�
. It gives

ı m2h�Ci
�
�Cr � ��rp

2

�
: (28.104)

Therefore the sum of the two tadpole terms vanish.
As a result of the D-term we obtain the following contributions to the light scalar

potential. We have

VD � �ı m
2

2

X
i

qi j�ij2 C g2

2

 X
i

qij�ij2
!2

(28.105)

C
 X

i

qi j�ij2
!
2g2 h�Ci

�
�Cr � ��rp

2

�

C4g2h�Ci2
2

�
�Cr � ��rp

2

�2
:
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The last term gives mass NM D 2gh�Ci ' 2gM to the real field. The first term
corresponds to a D-term mass for the light fields. The second term corresponds to
the quartic scalar term from the U.1/ D term. However, the U.1/ gauge symmetry
is broken at the scale M, so how is it possible to have the quartic scalar coupling in
the low energy theory? In fact, it decouples from the low energy theory, as we now
show. The actual quartic term in the effective low energy theory has two parts. The
first part given by the second term and a second part due to the tree level exchange

of the real field,


�Cr���rp

2

�
.

Veff
D D �ı m

2

2

X
i

qi j�ij2 C g2

2

 X
i

qij�ij2
!2

(28.106)

C2 .g
2 h�Ci/2
p2 � NM2

 X
i

qi j�ij2
!2

(28.107)

D �ı m
2

2

X
i

qi j�ij2 C
 
1C NM2

p2 � NM2

!  X
i

qij�ij2
!2

' �ı m
2

2

X
i

qi j�ij2 .for p2= NM2 
 1/:

These correspond to the two terms in Fig. 28.2.

Fig. 28.2 The top figure is the tree level D term spitting out two scalars plus the tree level quartic
coupling. The bottom figure is the exchange of the real scalar in the massive gauge multiplet
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In this problem, we have shown that soft SUSY breaking U.1/ quartic terms
decouple when the U.1/ symmetry is spontaneously broken at a scale, M  m,
where m is the effective low energy SUSY breaking scale. The D term, on the other
hand, remains in the effective low energy theory.

28.11 Solution to Problem 9

Case 1: �� � �r

Let us first consider the case when the universe is radiation dominated. In this
era, the scale factor is given by a2 D Ct, where C D 2 T20p

3m2Pl
. As initial conditions we

take C D 1. The Hubble parameter is then H D .2t/�1 and the equation of motion
is

R� C 3

2t
P� C m2� D 0 : (28.108)

Using Mathematica, the analytic solution for this equation is determined to be

�.t/ D
21=4m3=4�

�
5
4


J 1
4
.mt/

t1=4
; (28.109)

where Jn.z/ is the Bessel function of the first kind and � .n/ is the Euler gamma
function.

In order to fully understand this result we use the trial solution � D �0 ei!.t/ and
solve for !. In the limit that ji3H P!j  . P!/2 and initial conditions �0 D m and
P!.0/ D 0, the equation of motion becomes

i R! C 3i

2t
P! C m2 D 0: (28.110)

Initially, H  m. Since this causes the oscillations of � to be over-damped, we want
to initially ignore R!. However, because P!.0/ D 0, let us keep R! for very early times
and we find the solution !.t/ D im2t2=5. Thus for very early times we have

�.t/ ' �0 e
�m2

5 t2 : (28.111)

This continues until 3 H � m.
When 3H � m, the damping is non-negligible and we now ignore R!. Setting

3H D m, the equation of motion becomes

� P!2 C im P! C m2 D 0: (28.112)
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Fig. 28.3 The exact solution and approximate piecewise solution for �.t/ at early times are shown
by the blue and orange lines, respectively

The solutions in this regime are

!˙.t/ D imt

2
˙

p
3mt

2
(28.113)

! �.t/ D �0
0e

� 1
2mt cos

p
3

2
mt; (28.114)

where the choice of !C or !� doesn’t matter since we take the real part of ei!.t/

and cosine is an even function. The coefficient �0
0 is determined by matching the

solutions of the two regimes discussed so far at the crossover. Taking the time of the
crossover to be t D 1=m, we find �0

0 D me�1=3.
We plot the exact solution and the piecewise constructed solution in Fig. 28.3 for

very early times. Note, that the energy in the � field decreases very slowly between
the initial time, t � 1=mPl, and late times when t � 1=m, since the field is over-
damped due to Hubble friction.

Case 2: 3H < m
Finally, we want to discuss late times when 3H 
 m. Here, for the moment, we

ignore the Hubble parameter in Eq. (28.110) and obtain for this regime

i R! � P!2 C m2 D 0: (28.115)

This equation is second order and therefore has two solutions. One solution can
easily be seen to be ! D mt. To obtain the full behavior at late times, let us construct
a solution by multiplying the simple oscillatory behavior, cosmt, by some power of
the scale factor, a.t/. Let us now quantify what would be considered “late times”
and determine the behavior of the scalar field in this limit. The continuity equation



28.11 Solution to Problem 9 399

for � is given by

P� D �3H.� C p�/: (28.116)

The pressure can determined from the stress-energy tensor,

p� D Tii D CL D 1

2
P�2 � 1

2
m2�2: (28.117)

Due to the simple oscillatory behavior of �.t/, we can take hp�i D 0 when averaged
over many cycles. We therefore expect for the energy density to decrease as a�3.
Since the universe is radiation dominated,

�
alate
a.t/

�2
D tlate

t
; (28.118)

where the subscript “late” denotes the time at which the relation 3H 
 m is valid.
If the energy density drops like a�3, then � drops like a�3=2 and we find

�.t/ D �00
0 cosmt


 tlate
t

�3=4
: (28.119)

We can determine �00
0 and tlate by choosing the crossover to this final regime to be

when 3H=m D 1=e. This gives tlate D 3e
2m and �00

0 is determined by inserting tlate into
Eq. (28.114). We plot the exact solution and the piecewise constructed solution in
Fig. 28.4 for all times. After times t � 1=m, the field oscillates and loses energy as
pressureless matter.
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Fig. 28.4 The exact solution and approximate piecewise solution for �.t/ for all times are shown
by the blue and orange lines, respectively
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At even later times the total energy density is dominated by the energy density
stored in the scalar field, the Hubble parameter can be expressed solely in terms of
� and P�.

H2 D �

3m2Pl
! H D

"
1
2

P�2 C 1
2
m2�2

3m2Pl

#1=2
(28.120)

The energy in the � field still satisfies � � 1=a3. The only difference is the
dependence of the scale factor, a, on time. During the matter dominated epoch we
have a.t/ � t2=3.

28.12 Solution to Problem 10

The solutions to these problems uses the identity

ei� D cos � C i sin � D 1C
1X
kD1

.i�/2k

.2k/Š
C

1X
kD1

.i�/2kC1

.2k C 1/Š
: (28.121)

(a) Using T3 T˙ D T˙ .T3 ˙ 1/ and .T3/2 T˙ D T˙ .T ˙ 1/2 and

ei
y
R T

3 D 1 � .T3/2 C .T3/2 cos.
y

R
/C iT3 sin.

y

R
/; (28.122)

we have

ei
y
R T

3

T˙ D T˙.1�.T3˙1/2C.T3˙1/2 cos.
y

R
/Ci.T3˙1/ sin.

y

R
// D T˙ ei

y
R .T

3˙1/:
(28.123)

Therefore we have

ei
y
R T

3

T˙ e�i yR T
3 D e˙i yR T˙: (28.124)

(b) We also have that

ei�T
3 D 1 � .T3/2 C .T3/2 cos.�/C iT3 sin.�/ D diag.�1;�1; 1/: (28.125)
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28.13 Solution to Problem 11

1. (a)

T D exp.�i
3

2
�.B�L// with .B�L/ D 2

3

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCCA

˝
�
0 �i
i 0

�
� 2

3
˛:

(28.126)

Note, ˛2n D diag.1; 1; 1; 1; 1; 1; 0; 0; 0; 0/� ˇ and ˛2nC1 D ˛. Thus

T D exp.�i�˛/ D
1X
nD0

.�i�˛/n

nŠ
(28.127)

D
1X
nD0

.�i�˛/2n

.2n/Š
C

1X
nD0

.�i�˛/2nC1

.2n C 1/Š

D 1C ˇ

1X
nD1

.�1/n.�/2n
.2n/Š

� i˛
1X
nD0

.�1/n.�/2nC1

.2n C 1/Š

D 1C ˇ .cos� � 1/� i˛ sin� D 1 � 2ˇ

D diag.�1;�1;�1;�1;�1;�1; 1; 1; 1; 1/:

(b)

T D exp.i3�Y/ with 3Y D

0
BBBB@

�2 0 0 0 0

0 �2 0 0 0

0 0 �2 0 0
0 0 0 3 0

0 0 0 0 3

1
CCCCA

� ˛: (28.128)

However

T D ei�˛ D

0
BBBBB@

C1 0 0 0 0

0 C1 0 0 0

0 0 C1 0 0

0 0 0 �1 0

0 0 0 0 �1

1
CCCCCA
: (28.129)
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28.14 Solution to Problem 12

We want to evaluate the one-loop renormalization of the gauge coupling constants
in the orbifold GUT theory with the sum over all KK modes. We start with
the vacuum polarization tensor which contributes to the ˇ function. Consider the
vacuum polarization of the gauge fields with fermions in the loop. The vacuum
polarization is given by

˘��.k/ D �
1X

nD�1
g2
Z

d4q

.2�/4
tr

�
��

1

=q � mn
��

1

=k C =q � mn

�
; (28.130)

where mn is the mass of the n Kaluza-Klein excitation. The negative sign is due to
the fermion loop.

From Ward identity

˘��.k/ D .k2g�� � k�k�/˘.k/

g��˘��.k/ D 3k2˘.k/ : (28.131)

Hence,

˘.k/ D � g2

3k2

1X
nD�1

Z
d4q

.2�/4
tr

�
��

1

=q � mn
��

1

=k C =q � mn

�

D � g2

3k2

1X
nD�1

Z
d4q

.2�/4

trŒ��.=q C mn/�
�.=k C =q � mn/�

.q2 � m2n/Œ.k C q/2 � m2n�

D � g2

3k2

1X
nD�1

Z
d4q

.2�/4

trŒ.�2=q C 4mn/.=k C =q � mn/�

.q2 � m2n/Œ.k C q/2 � m2n�

D � 8g2

3k2

1X
nD�1

Z
d4q

.2�/4
�q � .k C q/C 2m2

.q2 � m2n/Œ.k C q/2 � m2n�
; (28.132)

Using Feynman parameter to combine the denominator, we have

1

.q2 � m2n/Œ.k C q/2 � m2n�
D
Z 1

0

dx
1

ŒxŒ.k C q/2 � m2n�C .1 � x/.q2 � m2n/�
2

D
Z 1

0

dx
1

Œq2 C 2kqx C k2x � m2n�
2

D
Z 1

0

dx
1

Œl2 C x.1 � x/k2 � m2n�
2
; (28.133)
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where l D q C kx. With this transformation, the numerator becomes

�q � .k C q/C 2m2 D �l2 C x.1 � x/k2 C 2m2n ; (28.134)

where I have dropped terms linear in l because they vanish when taking the l integral.
Relabeling l as q we have

˘.k/ D � 8g2

3k2

1X
nD�1

Z 1

0

dx
Z

d4q

.2�/4
�q2 C x.1 � x/k2 C 2m2n
Œq2 C x.1 � x/k2 � m2n�

2
; (28.135)

Rotate to Euclidean momenta, q ! iqE, we have

˘.k/ D � 8g2

3k2

1X
nD�1

Z 1

0

dx
Z

d4qE
.2�/4

q2 � x.1 � x/k2 C 2m2n
Œq2 C x.1 � x/k2 C m2n�

2
; (28.136)

Using the Schwinger proper-time parameter,

Z 1

0

dt te�At D � d

dA

Z 1

0

dte�At D � d

dA

1

A
D 1

A2
; (28.137)

we have

˘.k/ D �8g
2

3k2

1X
nD�1

Z 1

0

dx
Z 1

0

dt t
Z

d4qE
.2�/4

Œq2 � x.1 � x/k2 C 2m2n�

exp
˚�tŒq2 C x.1 � x/k2 C m2n�

�
: (28.138)

Using the following identities

Z
d4qE
.2�/4

e�tq2E D 1

16�4

Z
d3˝E

Z 1

0

dqE q3Ee
�tq2E D 2�2

16�4

Z 1

0

dqE q3Ee
�tq2E

(28.139)

D �2

16�4

Z 1

0

dq2E q2Ee
�tq2E D �2

16�4
1

t2
D 1

16�2t2
;

and

Z
d4qE
.2�/4

q2Ee
�tq2E D � d

dt

Z
d4qE
.2�/4

e�tq2E D 1

8�2t3
; (28.140)
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the loop integral becomes

˘.k/ D � g2

6�2k2

1X
nD�1

Z 1

0

dx
Z 1

0

dt

t

�
2

t
� x.1 � x/k2 C 2m2n

�

exp
˚�tŒx.1 � x/k2 C m2n�

�
: (28.141)

Integrate the first term by parts, we have

Z 1

0

dt

t

2

t
exp

˚�tŒx.1 � x/k2 C m2n�
�

(28.142)

D �2
t

exp
˚�tŒx.1 � x/k2 C m2n�

� ˇ̌ˇ̌
1

0

�
Z 1

0

dt

t
2
�
x.1 � x/k2 C m2n

�

exp
˚�tŒx.1 � x/k2 C m2n�

�
: (28.143)

Ignoring the boundary term, which will be elaborate on later, (28.141) becomes

˘.k/ D g2

2�2

1X
nD�1

Z 1

0

dx x.1 � x/
Z 1

0

dt

t
exp

˚�tŒx.1 � x/k2 C m2n�
�
:

(28.144)

Using Jocobi #3 function

#3.	/ D
1X

nD�1
expfi�	n2g ; (28.145)

and taking m2n D n2

R2
we have

˘.k/ D g2

2�2

Z 1

0

dx x.1 � x/
Z 1

0

dt

t
e�tŒx.1�x/k2�2#3

�
it

�R2

�
: (28.146)

For k D 0, we have

˘.0/ D g2

12�2

Z 1

0

dt

t
#3

�
it

�R2

�
: (28.147)

Since this integral is UV and IR divergent, we introduce both UV and IR cutoffs

˘.0/ D g2

12�2

Z r��2
0

r��2

dt

t
#3

�
it

�R2

�
D g2b

16�2

Z r��2
0

r��2

dt

t
#3

�
it

�R2

�
;

(28.148)
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where b D 4=3 is the beta-function coefficient of a single Dirac fermion and r D
�=4 is a numerical factor.

Now, consider the boundary term in (28.143). The boundary term with the cutoff
becomes

g2

6�2k2
2

t
e�tŒx.1�x/k2Cm2n�

ˇ̌
ˇ̌
1

r��2

D � g2

6�2k2
2�2

r
e�rŒx.1�x/k2Cm2n�=�

2

: (28.149)

This term is quadratically divergent. It leads to a term in the vacuum polarization
tensor of the form

˘��.k/ / g�� g
2�2 (28.150)

which corresponds to a mass term for the gauge boson. It is a signal that our
regularization scheme is not gauge invariant. In any gauge invariant regularization
scheme, such as dimensional regularization, this quadratic divergence is absent.
Therefore we can safely ignore it here. On the other hand, the second term
in (28.143) is logarithmic divergent.

The one-loop-corrected gauge coupling is then given by

g.�/ D
�

1

1�˘.0/

�1=2
g.�0/

˛�1.�/ D Œ1 �˘.0/�˛�1.�0/ D ˛�1.�0/ � 4�

g2
˘.0/

˛�1.�/ D ˛�1.�0/ � b

4�

Z r��2
0

r��2

dt

t
#3

�
it

�R2

�
: (28.151)

28.15 Solution to Problem 13

In general, the gauge bosons which comprise the local GUT satisfy

P � X D 0 mod 1; (28.152)

where X, in our case, is defined by

X D V6 C 0 � W3 C 0 � W2 D V6: (28.153)

Clearly, the E8 roots which survive the projection are

.000˙1˙ 1000/; ˙.01 � 100000/: (28.154)
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In order to find the gauge group, we should find a suitable basis and calculate the
Cartan Matrix. We choose

˛1 D 0 0 0 1 �1 0 0 0

˛2 D 0 0 0 0 1 �1 0 0

˛3 D 0 0 0 0 0 1 �1 0

˛4 D 0 0 0 0 0 0 1 �1
˛5 D 0 0 0 0 0 0 1 1

˛6 D 1 �1 0 0 0 0 0 0

˛7 D 0 1 �1 0 0 0 0 0

(28.155)

We can again compute the Cartan Matrix of the 7 roots and find:

A D

0
BBBBBBBBB@

2 �1 0 0 0 0 0

�1 2 �1 0 0 0 0

0 �1 2 �1 �1 0 0

0 0 �1 2 0 0 0

0 0 �1 0 2 0 0

0 0 0 0 0 2 �1
0 0 0 0 0 �1 2

1
CCCCCCCCCA

: (28.156)

The Cartan Matrix for SO.10/ is

ASO.10/ D

0
BBBBB@

2 �1 0 0 0

�1 2 �1 0 0

0 �1 2 �1 �1
0 0 �1 2 0

0 0 �1 0 2

1
CCCCCA
; (28.157)

so it seems that our local GUT is precisely SO.10/� SU.3/.
In order to show that there’s a spinor .16/ of SO.10/, we must find the right

mover and the left mover which satisfy the masslessness conditions, Eqs. (20.147)
and (20.148). We find

a1R D 1

2
� 1

2

�
5

36
C 2

9
C 1

4

	
D � 7

36
: (28.158)

This gives us the mass equation

jr C v6j2 D 7

18
(28.159)
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Now, consider the SO.8/vector j0010i or spinor
ˇ̌� 1

2
� 1

2
1
2
1
2

˛
. They both satisfy the

mass relationship:

jr C v6j2 D 7

18
: (28.160)

Next, we calculate the mass equation in the left moving sector:

a1L D 1 � 1

2

�
5

36
C 2

9
C 1

4

�
D 25

36
(28.161)

Showing that there is an SO.10/ spinor is as easy as finding some E8 lattice vector
that is all ˙ 1

2
s and which obeys the masslessness condition

jP C V6j2 D 50

36
(28.162)

We find that

P D 1

2
.�1;�1;�1;˙1;˙1;˙1;˙1;˙1/ .08/ (28.163)

with an even number of minus signs works. These are just the 16 states in the spinor
representation of SO.10/.

Finally we can show how the projection condition works on the left mover:

.2P C V6/ � V6 D 2P � V6 C V26 D �1C 7

18
: (28.164)

This is fortunate, because the right mover transforms as

.2r C v6/ � v6 D 2r � v6 C v26 D �1C 7

18
: (28.165)

We have no oscillators so � D 1, and � D 1 in the first twisted sector. This means
that the GSO projection acts on the states as

� D �� exp fi� Œ.2P C V6/ � V6 � .2r C v6/ � v6�g D 1: (28.166)
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